Предмет: Математика,
автор: Kostya20001
Задача
2: Двое по очереди,
вдоль углублений, ломают шоколадку 3 × 5. Каждый съедает все плитки
1 × 1, которые образуются после его хода. Выигрывает тот, кто съест
больше плиток 1 × 1. Кто, начинающий или его партнер съест больше
шоколада?
Задача
3: Семиклассник
разрезал квадрат на прямоугольники периметра 7, а восьмиклассник – на
прямоугольники периметра 8. Могло ли у восьмиклассника получиться больше
прямоугольников?
Задача4:По кольцевой дороге курсируют с одинаковой
скоростью и равными интервалами 12 трамваев. Сколько трамваев надо добавить,
чтобы при той же скорости интервалы между трамваями уменьшились бы на одну
пятую?
Задача 5.В многосерийном
фильме 44 серии. Фильм показывают в понедельник, вторник, среду и четверг, по
две серии в день. В какой день недели будет показана последняя серия? Запиши в
ответ название дня.
Задача 6: Червяк ползет по столбу,
начав путь от его основания. Каждый день он проползает вверх на 5 см, а за
каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его
высота равна 75 см?
Задача 7: В
примере на сложение цифры заменили буквами (причем одинаковые цифры –
одинаковыми буквами, а разные цифры – разными буквами) и получили:
БУЛОК + БЫЛО = МНОГО. Сколько же было булок? Их количество
есть максимальное возможное значение числа МНОГО
Задача 8: Как разложить по семи
кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно
было бы выдать, не открывая кошельков?
Задача 9: Все костяшки домино выложили
в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?
Задача 10: Петя купил общую тетрадь
объемом 96 листов и пронумеровал все ее страницы по порядку числами от 1 до
192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на
них написаны. Могло ли у него получиться 1990?
Задача 11: Кузнечик прыгает по прямой,
причем в первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2
см и так далее. Докажите, что после 1985 прыжков он не может оказаться там, где
начинал.
Задача 12: В народной дружине 100
человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое
время оказаться так, что каждый с каждым дежурил ровно один раз?
Задача 13: Имеется две кучки камней –
по 7 в каждой. За ход разрешается взять любое количество камней, но только из
одной кучки. Проигрывает тот, кому нечего брать.
Задача 14: В государстве 100 городов, и
из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?
Ответы
Автор ответа:
0
Задача 3. Да, семиклассник может разрезать квадрат на прямоугольники 2,5*1, а восьмиклассник на 0,5*3,5.
Задача 4. Так как длина интервала обратно пропорциональна числу трамваев, то трамваев должно быть 12: 4/5=15 15-12=3 трамвая надо добавить.
Задача 5. 4*2=8 серий в неделю
44/8=5 полных недель, 44-5*8=4
4/2=2 дня, значит во вторник.
Задача 6. Червяк окажется вверху к вечеру 71 дня.
Задача 7. Допустим, М=9, Б=8, У=7, Л=1, Ы=2, Г=4, О=3, К=0, Н=5
87130+8213=95343
булок было 95343 штуки.
Задача 8. 127 бумажек нужно разложить так: 1+2+4+8+16+32+64
Задача 9. Если с соблюдением правил, то тоже 5.
Задача 10. Не могло, так как при решении ответ получается 39,8-нецелое число.
Задача 11. Не может, так как сумма 1+2+,,,+1985 нечетная
Задача 12. Нет,не может. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако √99 нечетное число.
Задача 14. 100*4/2=200 дорог, так как из города выходит 4 дороги мы умножаем на 4, но делим на 2, так как одна дорога соединяет два города.
Задача 4. Так как длина интервала обратно пропорциональна числу трамваев, то трамваев должно быть 12: 4/5=15 15-12=3 трамвая надо добавить.
Задача 5. 4*2=8 серий в неделю
44/8=5 полных недель, 44-5*8=4
4/2=2 дня, значит во вторник.
Задача 6. Червяк окажется вверху к вечеру 71 дня.
Задача 7. Допустим, М=9, Б=8, У=7, Л=1, Ы=2, Г=4, О=3, К=0, Н=5
87130+8213=95343
булок было 95343 штуки.
Задача 8. 127 бумажек нужно разложить так: 1+2+4+8+16+32+64
Задача 9. Если с соблюдением правил, то тоже 5.
Задача 10. Не могло, так как при решении ответ получается 39,8-нецелое число.
Задача 11. Не может, так как сумма 1+2+,,,+1985 нечетная
Задача 12. Нет,не может. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако √99 нечетное число.
Задача 14. 100*4/2=200 дорог, так как из города выходит 4 дороги мы умножаем на 4, но делим на 2, так как одна дорога соединяет два города.
Автор ответа:
0
в 6 задаче почему червяк окажется к вечеру 71 дня на верхушке столба?
Автор ответа:
0
мне кажется на 75 день он приползет
Похожие вопросы
Предмет: Физика,
автор: kostanaumov058
Предмет: Химия,
автор: R12omasmir
Предмет: Физика,
автор: ilia20112017
Предмет: Обществознание,
автор: ColorDream
Предмет: Алгебра,
автор: Dimon111198