Предмет: Геометрия,
автор: alenatatunca88
312." У трикутнику АВС відомо, що AB = BC, ZA = 60°, кут BCD суміжний із кутом АСВ, СМ - бісектриса кута BCD. Доведіть, що AB || СМ.
Ответы
Автор ответа:
0
Ответ:
Нехай дано ∆АВС, АВ = ВС, ∟ZA = 60°, ∟BCD - суміжний з ∟ACB,
СМ - бісектриса ∟BCD. Доведемо, що АВ ‖ СМ.
Розглянемо ∆АВС - рівнобедрений (АВ = ВС),
тоді ∟BAC = ∟BCA = 60° (як кути при ocновi ∆АВС).
∟ACB + ∟BCD = 180° (як суміжні), ∟BCD = 180° - 60° = 120°.
∟BCM = ∟MCD = 1/2∟BCD = 120° : 2 = 60° (СМ - бісектриси ∟BCD).
∟ВАС = ∟MCD = 60°, цi кути є відповідними при прямих АВ, CM i cічнй AD.
Tоді за ознакою паралельності прямих АВ ‖ СМ.
zincenkomisa974:
Норм?
Похожие вопросы
Предмет: Русский язык,
автор: iiiiivvvv
Предмет: Русский язык,
автор: iiiiivvvv
Предмет: Технология,
автор: annaanya345
Предмет: Математика,
автор: vadim0956
Предмет: Русский язык,
автор: Alinka161014