Предмет: Математика, автор: jarkoi0912

помогите решить дам 50 баллов​

Приложения:

Ответы

Автор ответа: bbbapho
0

1)

 \frac{ab -  {b}^{2} }{8}  \times  \frac{32a}{ {b}^{3} }  =  \frac{(ab -  {b}^{2} ) \times 32a}{8 \times  {b}^{3} }  =  \frac{b \times (a - b) \times 4 \times 8 \times a}{8 \times  {b}^{3} }  =  \frac{4a(a - b)}{ {b}^{2} }  =  \frac{4 {a}^{2}  - 4ab}{ {b}^{2} }

2)

 \frac{ {m}^{2}  - mn}{ {m}^{2} + mn }  \times  \frac{ {m}^{2}n + m {n}^{2}  }{ {m}^{3} -  {m}^{2}n  }  =  \frac{m(m - n)}{m(m + n)}  \times  \frac{mn(m + n)}{ {m}^{2}(m - n) }  =   \frac{m - n}{m + n}  \times  \frac{n(m + n)}{m(m - n)}  =  \frac{(m - n) \times n \times (m + n)}{(m + n) \times m \times (m - n)}  =  \frac{n}{m}

3)

 \frac{ {x}^{2} - 16 }{ {x}^{3}  - 3 {x}^{2} }  \times  \frac{ {x}^{2}  - 9}{ {x}^{2} + 4x }  =  \frac{ {x}^{2}  -  {4}^{2} }{ {x}^{2} (x - 3)}  \times  \frac{ {x}^{2}  -  {3}^{2} }{x(x + 4)}  =  \frac{(x - 4)(x + 4)}{ {x}^{2} (x - 3)}  \times  \frac{(x - 3)(x + 3)}{x(x + 4)}  =  \frac{(x - 4) \times (x + 4) \times (x - 3) \times (x + 3)}{ {x}^{2} \times (x - 3) \times x \times (x + 4) }  =  \frac{(x - 4) \times (x + 3)}{ {x}^{2}  \times x}  =  \frac{ {x}^{2} + 3x - 4x - 12 }{ {x}^{3} }  =  \frac{ {x}^{2}  - x - 12}{ {x}^{3} }

4)

 \frac{5 {y}^{2}  - 20y + 20}{ {y}^{3}  - 1}  \times  \frac{3 {y}^{2}  + 3y + 3}{10y - 20}  =  \frac{5( {y}^{2} - 4y + 4) }{(y - 1)( {y}^{2} + y + 1) }  \times  \frac{3( {y}^{2}  + y + 1)}{10(y - 2)}  =  \frac{5 {(y - 2)}^{2} }{(y - 1)( {y}^{2} + y + 1) }  \times  \frac{3 ( {y}^{2} + y + 1)  }{10(y - 2)}  =  \frac{5   {(y - 2)}^{2}  \times 3( {y}^{2}  + y + 1)}{(y - 1)( {y}^{2}  + y + 1) \times 10(y - 2)}  =  \frac{(y - 2) \times 3}{(y - 1) \times 2}  =  \frac{3y - 6}{2y - 2}

1)

 \frac{x + 1}{3x}  \div  \frac{ {x}^{2} + 2x + 1 }{9 {x}^{2} }  =  \frac{x + 1}{3x}  \times  \frac{9 {x}^{2} }{ {x}^{2}  + 2x + 1}  =  \frac{x + 1}{3x}  \times  \frac{ {(3x)}^{2} }{ {(x + 1)}^{2} }  =  \frac{(x + 1) \times 3x \times 3x}{3x \times (x + 1) \times (x + 1)}  =   \frac{3x}{x + 1}

2)

 \frac{ {x}^{2} - 2x }{3x + 3}  \div  \frac{5x - 10}{x + 1}  =  \frac{ {x}^{2}  - 2x}{3x + 3}  \times  \frac{x + 1}{5x - 10}  =  \frac{x(x - 2)}{3(x + 1)}  \times  \frac{x + 1}{5(x - 2)}  =  \frac{x \times (x - 2) \times (x + 1)}{3 \times (x + 1) \times 5 \times (x - 2)}  =  \frac{x}{3 \times 5}  =  \frac{x}{15}

3)

(n - 7) \div  \frac{ {n}^{2}  - 14n + 49}{ {n}^{2} - 49 }  = (n - 7) \times  \frac{ {n}^{2}  - 49}{ {n}^{2}  - 14n + 49}  =  \frac{(n - 7) \times ( {n}^{2}  -  {7}^{2} )}{ {(n - 7)}^{2} }  =  \frac{(n - 7) \times (n - 7)(n + 7)}{(n - 7)(n - 7)}  = n + 7

4)

 \frac{ {a}^{2} - 4 {b}^{2}  }{9 {a}^{2}  -  {b}^{2} }  \div  \frac{ {a}^{2} + 4ab + 4 {b}^{2}  }{9 {a}^{2}  - 6ab +  {b}^{2} }  =  \frac{ {a}^{2}  - 4 {b}^{2} }{9 {a}^{2}  -  {b}^{2} }  \times  \frac{9 {a}^{2}  - 6ab +  {b}^{2} }{ {a}^{2}  + 4ab + 4 {b}^{2} }  =  \frac{ {a}^{2} -  {(2b)}^{2}  }{ {(3a)}^{2} -  {b}^{2}  }  \times  \frac{ {(3a)}^{2}  - 6ab +  {b}^{2} }{ {a}^{2}  + 4ab +  {(2b)}^{2} }  =  \frac{(a - 2b)(a + 2b)}{(3a - b)(3a + b)}  \times  \frac{ {(3a - b)}^{2} }{ {(a + 2b)}^{2} }  =  \frac{(a - 2b)(a + 2b) \times (3a - b)(3a - b)}{(3a - b)(3a + b) \times (a + 2b)(a + 2b)}  =  \frac{(a - 2b) \times (3a - b)}{(3a + b) \times (a + 2b)}  =  \frac{3 {a}^{2} - ab - 6ab + 2 {b}^{2}  }{3 {a}^{2}  + 6ab + ab + 2 {b}^{2} }  =  \frac{3 {a}^{2} - 7ab + 2 {b}^{2}  }{3 {a}^{2}  + 7ab + 2 {b}^{2} }

Похожие вопросы
Предмет: Русский язык, автор: Anestesia
Предмет: Русский язык, автор: геля105