Предмет: Алгебра, автор: popidans

помогите пожалуйста ​

Приложения:

Ответы

Автор ответа: bbbapho
1

2. Выполните действия:

а) ( \frac{a}{ {b}^{2} }  -  \frac{1}{a} ) \div ( \frac{1}{b}  -  \frac{1}{a} ) = ( \frac{a \times a}{ {b}^{2}  \times a}  -  \frac{1 \times  {b}^{2} }{a \times  {b}^{2} } ) \div ( \frac{1 \times a}{b \times a}  -  \frac{1 \times b}{a \times b} ) = ( \frac{ {a}^{2} }{a {b}^{2} }  -  \frac{ {b}^{2} }{a {b}^{2} } ) \div ( \frac{a}{ab}  -  \frac{b}{ab} ) =  \frac{ {a}^{2}  -  {b}^{2} }{a {b}^{2} }  \div  \frac{a - b}{ab}  =  \frac{ {a}^{2} -  {b}^{2}  }{a {b}^{2} }  \times  \frac{ab}{a - b}  =  \frac{( {a}^{2} -  {b}^{2} ) \times ab }{a {b}^{2}  \times (a - b)}  =  \frac{(a - b)(a + b) \times ab}{ab \times b \times (a - b)}  =  \frac{a + b}{b}

б) ( \frac{x}{5}  +  \frac{x}{8} ) \times  \frac{1}{ {x}^{2} }  = ( \frac{x \times 8}{5 \times 8}  +  \frac{x \times 5}{8 \times 5} ) \times  \frac{1}{ {x}^{2} }  = ( \frac{8x}{40}  +  \frac{5x}{40} ) \times  \frac{1}{ {x}^{2} }  = \frac{8x + 5x}{40}  \times  \frac{1}{ {x}^{2} }  =  \frac{13x}{40}  \times  \frac{1}{ {x}^{2} }  =  \frac{13x}{40 {x}^{2} }  =  \frac{13}{40x}

в) ( \frac{x}{y}  -  \frac{y}{x} ) \div  \frac{x - y}{3xy}  = ( \frac{x \times x}{y \times x}  -  \frac{y \times y}{x \times y} ) \div  \frac{x - y}{3xy}  = ( \frac{ {x}^{2} }{xy}  -  \frac{ {y}^{2} }{xy} ) \div  \frac{x - y}{3xy}  =  \frac{ {x}^{2} -  {y}^{2}  }{xy}  \div  \frac{x - y}{3xy}  =  \frac{ {x}^{2} -  {y}^{2}  }{xy}  \times  \frac{3xy}{x - y}  =  \frac{(x - y)(x + y) \times 3xy}{xy \times (x - y)}  =  \frac{(x + y) \times 3}{1}  = 3(x + y) = 3x + 3y

3. Выполните действия:

а) (1 -  \frac{1}{x} ) \div (1 +  \frac{1}{x} ) = ( \frac{x}{x}  -  \frac{1}{x} ) \div ( \frac{x}{x}  +  \frac{1}{x} ) =  \frac{x - 1}{x}  \div  \frac{x + 1}{x}  =  \frac{x - 1}{x}  \times  \frac{x}{x + 1}  =  \frac{(x - 1) \times x}{x \times (x + 1)}  =  \frac{x - 1}{x + 1}

б) (x -  \frac{x}{y} ) \times (x +  \frac{x}{y} ) = ( \frac{xy}{y}  -  \frac{x}{y} ) \times ( \frac{xy}{y}  +  \frac{x}{y} ) =  \frac{xy - x}{y}  \times  \frac{xy + x}{y}  =  \frac{(xy - x) \times (xy + x)}{y \times y}  =  \frac{x(y - 1) \times x(y + 1)}{ {y}^{2} }  =  \frac{ {x}^{2}  \times ( {y}^{2}  -  {1}^{2} )}{ {y}^{2} }  =   \frac{ {x}^{2} {y}^{2}   -  {x}^{2} }{ {y}^{2} }

4. Упростите выражение:

а)  {(x +  \frac{1}{x} )}^{2}  - 2  =  {( \frac{ {x}^{2} }{x}  +  \frac{ 1 }{x} )}^{2}  - 2 =  \frac{ {x}^{2} + 1 }{x}  - 2 =  \frac{ {x}^{2} + 1 }{x}  -  \frac{2x}{x}  =  \frac{ {x}^{2} + 1 - 2x }{x}  =  \frac{ {(x - 1)}^{2} }{x}

б)  {(a +  \frac{2}{a} )}^{2}  -  {(a -  \frac{2}{a} )}^{2}  = ((a +  \frac{2}{a}) - (a -  \frac{2}{a}) ) \times ((a +  \frac{2}{a} ) + (a -  \frac{2}{a} )) = (a +  \frac{2}{a}  - a +  \frac{2}{a} ) \times (a  +  \frac{2}{a}  + a  -  \frac{2}{a} ) =  \frac{4}{a}  \times 2a =  \frac{8a}{a}  = 8

1. Упростить выражение:

а)  \frac{4}{ {b}^{2}  - 4}  +  \frac{4b}{4 - 4b +  {b}^{2} }  \times ( \frac{2}{2b +  {b}^{2} }  -  \frac{b}{4 + 2b} ) =  \frac{4}{(b - 2)(b + 2)}  +  \frac{4b}{  {(2 - b)}^{2} }  \times ( \frac{2}{b(2 + b)}  -  \frac{b}{2(2 + b)} ) = \frac{4}{(b - 2)(b + 2)}  +  \frac{4b}{  {(2 - b)}^{2} }  \times  \frac{4 -  {b}^{2} }{2b(2 + b)}  = \frac{4}{(b - 2)(b + 2)}  + \frac{4b \times (2 - b)(2 + b)}{(2 - b)(2 - b) \times 2b(2 + b)}  = \frac{4}{(b - 2)(b + 2)}  + \frac{2 }{2 - b}  = \frac{4}{(b - 2)(b + 2)}  +  \frac{ - 2}{b - 2}  = \frac{4}{(b - 2)(b + 2)}  + \frac{ - 2 \times (b + 2)}{(b - 2) \times (b + 2)}  =  \frac{4 - 2b - 4}{ {b}^{2} - 4 }  =   \frac{ - 2b}{ {b}^{2} - 4 }  =  \frac{2b}{4 -  {b}^{2} }

б) ( \frac{1 + x}{ {x}^{2}  - xy}  -  \frac{1 - y}{ {y}^{2} - xy } ) \div  \frac{ {x}^{2} +  {y}^{2}   + 2xy}{ {x}^{2} y - x {y}^{2} }  -  \frac{x}{ {x}^{2}  -  {y}^{2} }  = ( \frac{1 + x}{x(x - y)}  -  \frac{1 - y}{y(y - x)} ) \div  \frac{ {(x + y)}^{2} }{xy(x - y)}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  = ( \frac{1 + x}{x(x - y)}  +  \frac{1 - y}{y(x - y)} ) \div  \frac{(x + y)(x + y)}{xy(x - y)}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  = ( \frac{y + xy}{xy(x - y)}  +  \frac{x - xy}{xy(x - y)} ) \div  \frac{(x + y)(x + y)}{xy(x - y)}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  =  \frac{y + xy + x - xy}{xy(x - y)}   \times  \frac{xy(x - y)}{(x + y)(x + y)}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  =

\frac{x + y}{(x + y)(x + y)}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  =  \frac{1}{x + y}  -  \frac{x}{{x}^{2}  -  {y}^{2} }  =  \frac{x - y}{{x}^{2}  -  {y}^{2} }  -  \frac{x}{{x}^{2}  -  {y}^{2} }  =  \frac{x - y - x}{ {x}^{2}  -  {y}^{2} }  =  \frac{ - y}{ {x}^{2} -  {y}^{2}  }  =  \frac{y}{ {y}^{2}  -  {x}^{2} }

в) на фото

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: настя3321
Предмет: Окружающий мир, автор: Аноним