Предмет: Математика,
автор: Rzhevskaya11
точка k не принадлежит плоскости трапеции ABCD (Ad и Bc основание) Докажите что прямая проходящая через середины отрезков KB и KC параллельна прямой AD"
Ответы
Автор ответа:
0
1. Рассмотрим плоскость КВС: треугольник КВС принадлежит этой плоскости. Обозначим середины сторон КВ и КС этого треугольника через Т и М соответственно, тогда ТМ - средняя линия треугольника КВС по определению. А по свойству средней линии ТМ || ВС. Но ВС || AD по определению трапеции, тогда TM || AD.
Что и требовалось доказать.
2. Секущая плоскость отсекает от исходного треугольника треугольник РМ1К1 подобный исходному РМК (треугольники подобны по 2-ум углам, т.к. секущая плоскость параллельна МК), а коэффициент подобия равен отношению подобных сторон M1K1 : MK=3:7 = k. Тогда K1P:KP=3:7
Пусть РК1=х, тогда получаем: , получаем уравнение: 7х=3х+60, х=15=РК1.
3. Прямая m пересекает стороны АВ и ВС треугольника АВС в серединах, а следовательно, совпадает со средней линией треугольника. Средняя линия параллельна основанию АС, значит и m параллельна ему, то есть m || α.
Что и требовалось доказать.
2. Секущая плоскость отсекает от исходного треугольника треугольник РМ1К1 подобный исходному РМК (треугольники подобны по 2-ум углам, т.к. секущая плоскость параллельна МК), а коэффициент подобия равен отношению подобных сторон M1K1 : MK=3:7 = k. Тогда K1P:KP=3:7
Пусть РК1=х, тогда получаем: , получаем уравнение: 7х=3х+60, х=15=РК1.
3. Прямая m пересекает стороны АВ и ВС треугольника АВС в серединах, а следовательно, совпадает со средней линией треугольника. Средняя линия параллельна основанию АС, значит и m параллельна ему, то есть m || α.
Похожие вопросы
Предмет: Математика,
автор: elizavettkao
Предмет: Литература,
автор: kyleshovaeva2301
Предмет: Физика,
автор: avasnetsova
Предмет: Математика,
автор: Denya1407
Предмет: Обществознание,
автор: Аноним