Предмет: Геометрия, автор: serikovads

2. Ребро куба ABCDA B C D равно а. Постройте сечение куба, проходящее через середины ребер A B1, CС и AD, и найдите площадь этого сечения.


Помогите


dnepr1: A B1, CС и AD надо уточнить обозначение вершин куба на рёбрах, через которые пройдёт сечение.
serikovads: А это все что дано
Больше ничего нет :)
dnepr1: Точно так: A B1, CС - ведь таких рёбер нет.
serikovads: AB1 и CC1 и AD1
serikovads: Рёбра
dnepr1: ЭТО: AB1 и CC1 и AD1 НЕВЕРНО!!! Правильно AА1 и CC1 и AD.

Ответы

Автор ответа: dzelenkov29
0

Ответ:

1)  Пусть данные середины - точки К,Р и М соответственно. Построим сечение куба. Для этого достаточно найти точку пересечения прямой РК с плоскостью основания. Опустим перпендикуляр РН на сторону ВС и проведем прямую НА до пересечения с прямой РК в точке Т.  ТН - проекция прямой РТ на плоскость АВСD. Соединив точки Т и М получим точку Q на ребре AD куба. КQ и QM - линии пересечения граней АА1D1D и АВСD плоскостью сечения. Остальные линии пересечения найдем, проведя в гранях куба прямые, параллельно полученным прямым, так как противоположные грани куба параллельны и значит линии пересечения этих граней третьей плоскостью также параллельны. Соединив точки К,О,Р,N,M,Q и К получим искомое сечение. Сечение - правильный 6-угольник со стороной, равной √(2(а²/4)) =а√2/2 (по Пифагору). По формуле площадь этого сечения равна S=t²*3√3/2, где t - сторона шестиугольника.Тогда S=(а√2/2)²*3√3/2 = a²*3√3/4. 2). Площадь полной поверхности пирамиды равна сумме площадей основания и четырех равных по площади боковых граней. Стороны ромба равны, диагонали взаимно перпендикулярны, точкой пересечения делятся пополам  и являются биссектрисами углов ромба. Тогда меньшая диагональ ромба равна d=D*tg(α/2). Сторона ромба равна a=d/(2Sin(α/2)) =D*tg(α/2)/(2Sin(α/2)). So=a²*Sinα =D²*tg²(α/2)*Sinα/(4Sin²(α/2)). Высота ромба равна h=So/a = a*Sinα. h= D*tg(α/2)*Sinα/(2Sin(α/2)). Апофема боковой грани равна А=h/(2Cosβ), а ее площадь равна Sг=(1/2)*а*А или Sг=(1/2)*D*tg(α/2)/(2Sin(α/2))*D*tg(α/2)*Sinα/(2Sin(α/2))/(2Cosβ). Sг=D²*tg²(α/2)*Sinα/(16Sin²(α/2)*Cosβ). Площадь полной поверхности равна S=D²*tg²(α/2)*Sinα/(4Sin²(α/2)) + D²*tg²(α/2)*Sinα/(4Sin²(α/2)*Cosβ). S=D²*tg²(α/2)*Sinα/(4Sin²(α/2))*(1+1/Cosβ).  

Подробнее – на Otvet.Ws – https://otvet.ya.guru/questions/5850373-1rebro-kuba-abcda1b1c1d1-ravno-a-postroite-sechenie-kuba.html

Объяснение:

Похожие вопросы
Предмет: Русский язык, автор: Zop1
Предмет: Русский язык, автор: кек091