Предмет: Математика,
автор: angelina34425
На гранях игрального кубика написаны числа 7, 8, 9, 10, 11, 12. Кубик бросили дважды. В первый раз сумма чисел на четырех «вертикальных» (то есть кроме нижней и верхней) гранях была равна 37, а во второй раз 39. Какое число может быть написано на грани, противоположной грани с числом 8? Найдите все возможные варианты.
Ответы
Автор ответа:
0
Ответ: Cумма чисел на всех гранях кубика равна 1+2+3+4+5+6=21
Первый раз сумма равна 13. Значит сумма первой двойки противоположных граней равна 21-13=8. Но на этой двойке числа 4 висеть не может. Тк 8-4=4 ,а цифры на гранях повторяться не могут.
Во втором случае можно найти сумму второй двойки противоположных граней куба: 21-16=5. Тут может быть если на одной грани 4. То на другой 1. Убедимся что нет других вариантов: найдем сумму 3 тройки противоположных граней: (21-8-5=8 то есть невозможно анологично 1 случаю) Ответ: 1
Добавить ответ
Пошаговое объяснение:
Похожие вопросы
Предмет: Українська література,
автор: sofia170505
Предмет: Русский язык,
автор: bertasov14
Предмет: Русский язык,
автор: grigoryanliana
Предмет: Математика,
автор: Sombra77711