Предмет: Геометрия,
автор: Dumb951
Диагонали ромба пересекаются в точке О и равны 18 см и 26 см. Найти периметр ромба и периметр одного из получившихся треугольников, если один из углов, которые образует диагональ со стороной ромба равен 60 градусов. Найти углы ромба.
Аноним:
Это все одно задание? Или два разных. Второе про углы?
Ответы
Автор ответа:
0
Объяснение:
Дано: АВСD - ромб, АС=18 см, ВD=26 см. ∠ОАD=60°.
Найти Р(АСВD), Р(АОD), ∠А, ∠В, ∠С, ∠D.
Диагонали ромба в точке пересечения делятся пополам, поэтому АО=ОС=18:2=9 см; ВО=ОD=26:2=13 см.
Найдем сторону ромба АD из ΔАОD-прямоугольного;
∠АDО=90-∠ОАD=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°; значит, АD=2АО=9*2=18 см.
AD=AB=BC=CD=18 cм.
Р(ABCD)=18*4=72 cм.
Р(АОD)=18+9+13=40 см.
Найдем углы ромба
Диагональ делит угол ромба пополам, поэтому ∠D=2∠ADO=30*2=60°
Противоположные углы ромба равны, поэтому ∠В=∠D=60°
Сумма углов ромба, прилежащих к одной стороне, равна 180°, поэтому ∠А=180-60=120°.∠С=∠А=120° как противолежащие углы ромба.
Похожие вопросы
Предмет: Русский язык,
автор: jenechka2101
Предмет: Русский язык,
автор: юля1417
Предмет: Английский язык,
автор: ТатьянаЯсакова
Предмет: Геометрия,
автор: DERTHOR
Предмет: География,
автор: VSDO