a^2-4/x-3=a^2-2a/2x+4
Ответы
Ответ:
Пошаговое объяснение:
A^2 - 4\/x - 3 = a^2 - 2×a\/2 x + 4
Result:
A^2 - 4\/x - 3 = a^2 - a x + 4
Geometric figure:
pair of parallel lines
Solutions:
a!=0, x = (-sqrt((-a^2 + A^2 - 7)^2 + 16 a) + a^2 - A^2 + 7)\/(2 a)
a!=0, x = (sqrt((-a^2 + A^2 - 7)^2 + 16 a) + a^2 - A^2 + 7)\/(2 a)
a = 0, A^2 - 7!=0, x = 4\/(A^2 - 7)
Integer solutions:
More solutions
a = -10, A = ± 11, x = 1
a = -3, A = ± 3, x = -1
a = -1, A = ± 2, x = -2
a = 0, A = ± 3, x = 2
a = 2, A = ± 3, x = -1
Number of integer solutions:
16
Implicit derivatives:
More
(da(A, x))\/(dx) = (4 + a x^2)\/((2 a - x) x^2)
(da(A, x))\/(dA) = (2 A)\/(2 a - x)
(dA(a, x))\/(dx) = -(4 + a x^2)\/(2 A x^2)
(dA(a, x))\/(da) = -(-2 a + x)\/(2 A)
(dx(a, A))\/(dA) = -(2 A x^2)\/(4 + a x^2)
(dx(a, A))\/(da) = ((2 a - x) x^2)\/(4 + a x^2)