Предмет: Геометрия,
автор: alexrubcov9600
центр описанной окружности лежит на высоте разнобедренного треугольника и делит высоту на отрезки, равны 5 см и 13 см. Найдите площадь этого треугольника
Ответы
Автор ответа:
0
центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров
центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров
ВО=ОА=13= радиусу описанной окружности
по теореме Пифагора
АР^2=AO^2-OP^2
AP=12
площадь треугольника равна половине высоты на основание
S=(1/2)*BP*AC=18*12=216
Ещё могу прикрепить фото
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: masta163
Предмет: Окружающий мир,
автор: kamilusmonov
Предмет: Русский язык,
автор: katkovairisd00
Предмет: Алгебра,
автор: alkhimik65
Предмет: Математика,
автор: azazza2