Предмет: Алгебра, автор: azaliahabibullina4

Упростите выражение:

1) 5/х^2+5х + х+15/25-х^2=
2)1/х+3 + 9/х^3+27=
3)2/х + 12/х^2-6х - 1-х/х-6=​

Ответы

Автор ответа: bbbapho
4

1)

 \frac{5}{ {x}^{2} + 5x }  +  \frac{x + 15}{25 -  {x}^{2} }  =  \frac{5}{x(x + 5)}  +  \frac{x + 15}{ {5}^{2} -  {x}^{2}  }  =  \frac{5}{x(x + 5)}  +  \frac{x + 15}{(5 - x)(5 + x)}  =  \frac{5 \times (5 - x)}{x(x + 5) \times (5 - x)}  +  \frac{(x + 15) \times x}{(5 - x)(5 + x) \times x}  =  \frac{25 - 5x}{x(5 - x)(5 + x)}  +  \frac{ {x}^{2} + 15x }{x(5 - x)(5 + x)}  =  \frac{25 - 5x +  {x}^{2} + 15x }{x(5 - x)(5 + x)}  =  \frac{25 + 10x +  {x}^{2} }{x(5 - x)(5 + x)}  =  \frac{ {(5 + x)}^{2} }{x(5 - x)(5 + x)}  =  \frac{5 + x}{x(5 - x)}  =  \frac{5 + x}{5x -  {x}^{2} }

2)

 \frac{1}{x + 3}  +  \frac{9}{ {x}^{3} + 27 }  =  \frac{1}{x + 3}  +  \frac{9}{ {x}^{3} +  {3}^{3}  }  =  \frac{1}{x + 3}  +  \frac{9}{(x + 3)( {x}^{2}  - 3x + 9)}  =  \frac{1 \times ( {x}^{2} - 3x + 9) }{(x + 3) \times ( {x}^{2} - 3x + 9) }  +  \frac{9}{(x + 3)( {x}^{2} - 3x + 9) }  =  \frac{ {x}^{2} - 3x + 9 + 9 }{(x + 3)( {x}^{2}  - 3x + 9)}  =  \frac{ {x}^{2} - 3x + 18 }{ {x}^{3}  + 27}

3)

 \frac{2}{x}  +  \frac{12}{ {x}^{2} - 6x }  -  \frac{1 - x}{x - 6}  =  \frac{2}{x}  +  \frac{12}{x(x - 6)}  -  \frac{1 - x}{x - 6}  =  \frac{2 \times (x - 6)}{x \times (x - 6)}  +  \frac{12}{x(x - 6)}  -  \frac{(1 - x) \times x}{(x - 6) \times x}  =  \frac{2x - 12}{ x(x - 6)}  +  \frac{12}{ x(x - 6)}  -  \frac{x -  {x}^{2} }{ x(x - 6) }  =  \frac{2x - 12 + 12 - x +  {x}^{2} }{ x(x - 6) }  =  \frac{ {x}^{2}  + x }{ x(x - 6) }  =  \frac{x(x + 1)}{x(x - 6)}  =  \frac{x + 1}{x - 6}

Похожие вопросы
Предмет: Английский язык, автор: ale9
Предмет: Українська мова, автор: welor