Предмет: Геометрия,
автор: anasteispettrova2000
6. Докажите, что средние линии треугольника делят его на четыре равных треугольника
ПОМОГИТЕ ПОЖАЛУЙСТА
Ответы
Автор ответа:
1
Объяснение:
Пусть ABC - треугольник. М - середина АВ, N - середина ВС, К - середина АС.
Докажем, что треугольники AMK, BMN, NKC, MNK равны.
Так как M,N,K - середины, то
AM = MB, BN = NC, AK = KC.
Используем свойство среднее линии:
MN = 1/2 * AC = 1/2 * (AK + KC) = 1/2 * (AK + AK) = AK
Аналогично MK = NC, NK = AM.
Тогда в треугольниках AMK, BMN, NKC, MNK
AM = BM = NK = NK
AK = MN = KC = MN
MK = BN = NC = MK
Значит треугольники равны по трем сторонам, что и требовалось доказать.
Похожие вопросы
Предмет: Английский язык,
автор: Kirka002
Предмет: Русский язык,
автор: VENDETTA2281488
Предмет: Русский язык,
автор: intizar1
Предмет: Английский язык,
автор: kamilla8394
Предмет: Геометрия,
автор: viktoriapaliuh