Предмет: Алгебра, автор: Аноним

Решить систему линейных уравнений методом Крамера

Приложения:

Ответы

Автор ответа: NNNLLL54
1

Ответ:

\left\{\begin{array}{l}2x_1-x_2=-1\\x_1-2x_2-x_3=-2\\x_2+x_3=-2\end{array}\right\\\\\\\Delta =\left|\begin{array}{ccc}2&-1&0\\1&-2&-1\\0&1&1\end{array}\right|=2(-2+1)+(1-0)=-2+1=-1\ne 0\\\\\\\Delta _1=\left|\begin{array}{ccc}-1&-1&0\\-2&-2&-1\\-2&1&1\end{array}\right|=-(-2+1)+(-2-2)=1-4=-3

\Delta _2=\left|\begin{array}{ccc}2&-1&0\\1&-2&-1\\0&-2&1\end{array}\right|=2(-2-2)+(1-0)=-8+1=-7\\\\\\\Delta _3=\left|\begin{array}{ccc}2&-1&-1\\1&-2&-2\\0&1&-2\end{array}\right|=2(4+2)+(-2-0)-(1-0)=12-2-1=9    

x_1=\dfrac{\Delta _1}{\Delta }=\dfrac{-3}{-1}=3\  \,\ \ \ x_2=\dfrac{\Delta _2}{\Delta }=\dfrac{-7}{-1}=7\ \ ,\ \ \ x_3=\dfrac{\Delta _3}{\Delta }=\dfrac{0}{-1}=-9


Аноним: помоги тут, пожалуйста
https://znanija.com/task/45629204
Похожие вопросы
Предмет: Английский язык, автор: kalmar1