Предмет: Алгебра, автор: bezrukov2134

помогите пожалуйста с алгеброй даю 40 баллов​

Приложения:

Ответы

Автор ответа: bbbapho
1

1 задание

2) а)

 \frac{ {(a - b)}^{2} }{18b}  -  \frac{ {(a - b)}^{2} }{12b}  +  \frac{ {a}^{2} -  {b}^{2}  }{36b}  =  \frac{ {(a - b)}^{2} \times 2 }{18b \times 2}  -  \frac{ {(a - b)}^{2}  \times 3}{12b \times 3}  +  \frac{ {a}^{2} -  {b}^{2}  }{36b}  =  \frac{2 \times  {(a - b)}^{2}  - 3 \times  {(a - b)}^{2} +  {a}^{2}  -  {b}^{2}  }{36b}  =  \frac{ -  {(a - b)}^{2}  +  {a}^{2} -  {b}^{2}  }{36b}  =  \frac{ -  {a}^{2} + 2ab -  {b}^{2}  +  {a}^{2}  -  {b}^{2}  }{36b}  =  \frac{2ab -  {b}^{2} }{36b}  =  \frac{b(2a - b)}{36b}  =  \frac{2a - b}{36}

б)

 \frac{3x + 2}{5x}  -  \frac{5x + 3y}{10xy}  -  \frac{y - 1}{2y}  = \frac{(3x + 2) \times 2y}{5x \times 2y}  -  \frac{5x + 3y}{10xy}  -  \frac{(y - 1) \times 5x}{2y \times 5x}  =  \frac{6xy + 4y}{10xy}  -  \frac{5x + 3y}{10xy}  -  \frac{5xy - 5x}{10xy}  =  \frac{6xy + 4y - 5x - 3y - 5xy + 5x}{10xy}  =  \frac{xy + y}{10xy}  =  \frac{y(x + 1)}{10xy}  =  \frac{x + 1}{10x}

3) а)

 \frac{c - 2}{3(c + 4)}  +  \frac{c}{c + 4}  = \frac{c - 2}{3(c + 4)}  +  \frac{c \times 3}{(c + 4) \times 3}  =  \frac{c - 2}{3c + 12}  +  \frac{3c}{3c + 12}  =  \frac{c - 2 + 3c}{3c + 12}  =  \frac{4c - 2}{3c + 12}

б)

 \frac{b - 2}{2b - 6}  -  \frac{b - 1}{3b - 3}  =  \frac{b - 2}{2(b - 2)}  -  \frac{b - 1}{3(b - 1)}  =  \frac{1}{2}  -  \frac{1}{3}  =  \frac{3}{6}  -  \frac{2}{6}  =  \frac{1}{6}

в)

 \frac{4a}{3a - 6}  +  \frac{3a}{8 - 4a}  =  \frac{4a}{3(a - 2)}  +  \frac{3a}{ - 4(a - 2)}  = \frac{4a \times ( - 4)}{3(a - 2) \times ( - 4)}  +  \frac{3a \times 3}{ - 4(a - 2) \times 3}  =  \frac{ - 16a}{ - 12(a - 2)}  +  \frac{9a}{ - 12(a - 2)}  =  \frac{ - 16a + 9a}{ - 12(a - 2)}  =  \frac{ - 7a}{ - (12a - 24)}  =  \frac{7a}{12a - 24}

4) а)

 \frac{x + 4}{xy -  {x}^{2} }  +  \frac{y + 4}{xy -  {y}^{2} }  =  \frac{x + 4}{x(y - x)}  +  \frac{y + 4}{ - y(y - x)}  =  \frac{(x + 4) \times ( - y)}{ x(y - x) \times ( - y)}  +  \frac{(y + 4) \times x}{ - y(y - x) \times x}  =  \frac{ - xy - 4y}{ - xy(y - x)}  +  \frac{xy + 4x}{ - xy(y - x)}  =  \frac{ - xy - 4y + xy + 4x}{ - xy(y - x)}  =  \frac{ - 4y + 4x}{ - xy(y - x)}  =  \frac{ - 4(y - x)}{ - xy(y - x)}  =  \frac{4}{xy}

б)

 \frac{3a(x - 9a)}{ {x}^{2} - 3ax }  -  \frac{3 {a}^{2}  -  {x}^{2} }{ax - 3 {a}^{2} }  =  \frac{3ax - 27 {a}^{2} }{x(x - 3a)}  -  \frac{3 {a}^{2} -  {x}^{2}  }{a(x - 3a)}  = \frac{(3ax - 27 {a}^{2} )\times a }{x(x - 3a) \times a}  -  \frac{(3 {a}^{2} -  {x}^{2} ) \times x }{a(x - 3a) \times x}  =  \frac{3 {a}^{2} x - 27 {a}^{3} - 3 {a}^{2} x  +  {x}^{3}  }{ax(x - 3a)}  =  \frac{ - 27 {a}^{3}   +   {x}^{3} }{ax(x - 3a)}  =   \frac{   {x}^{3}  -  {(3a)}^{3}  }{ax(x - 3a)}  =  \frac{(x - 3a)( {x}^{2}  + 3ax + 9 {a}^{2}) }{ax(x - 3a)}  =  \frac{ {x}^{2} + 3ax + 9 {a}^{2}  }{ax}

в)

 \frac{4}{ {c}^{2}  - 9}  -  \frac{2}{ {c}^{2} + 3c }  =  \frac{4}{(c - 3)(c + 3)}  -  \frac{2}{c(c + 3)}  =  \frac{4 \times c}{(c - 3)(c + 3) \times c}  -  \frac{2 \times (c - 3)}{c(c + 3) \times (c - 3)}  =  \frac{4c}{c(c - 3)(c + 3)}  -  \frac{2c - 6}{c(c - 3)(c + 3)  }  = \frac{4c - 2c + 6}{c(c - 3)(c + 3)} =  \frac{2c + 6}{c(c - 3)(c + 3)}  =  \frac{2(c + 3)}{c(c - 3)(c + 3)}  =  \frac{2}{c(c - 3)}  =  \frac{2}{ {c}^{2}  - 3c}

2 задание

2) а)

 \frac{6 {c}^{2} }{3c - 2}  - 2c - 5 =  \frac{6 {c}^{2} }{3c - 2}  -  \frac{2c \times (3c - 2)}{3c - 2}  -  \frac{5 \times (3c - 2)}{3c - 2}  =  \frac{6 {c}^{2} }{3c - 2}  -  \frac{6 {c}^{2}  - 4c}{3c - 2}  -  \frac{15c - 10}{3c - 2}  =  \frac{6 {c}^{2}  - 6 {c}^{2}  + 4c - 15c + 10}{3c - 2}  =  \frac{ - 11c + 10}{3c - 2}

б)

2y -  \frac{2 - 5y + 3 {y}^{2} }{3y - 2}  - 1 =  \frac{2y \times (3y - 2)}{3y - 2}  -  \frac{2 - 5y + 3 {y}^{2} }{3y - 2}  -  \frac{3y - 2}{3y - 2}  =  \frac{6 {y}^{2} - 4y }{3y - 2}  -  \frac{2 - 5y + 3 {y}^{2} }{3y - 2}  -  \frac{3y - 2}{3y - 2}  =  \frac{6 {y}^{2}  - 4y - 2 + 5y - 3 {y}^{2} - 3y + 2 }{3y - 2}  =  \frac{3 {y}^{2} - 2y }{3 y - 2 }  =  \frac{y(3y - 2)}{3y - 2}  =  \frac{y}{1}  = y

Похожие вопросы
Предмет: Русский язык, автор: ева169
Предмет: Алгебра, автор: BoZZil112