Предмет: Алгебра, автор: akmalhujaev9635

44. Не строя график, определите, при каком значении х квадратичная
функция имеет наибольшее (наименьшее) значение; найдите это
значение:
1) у = х2 – 6х + 13;
2) у = х2 – 2x – 4;
3) у = -х? + 4х + 3;
4) у = 3х2 – 6х + 1.

Ответы

Автор ответа: Farhad67
1

Теория:

Для многочлена ax²+bx+c точка экстремума (если а>0, то это точка минимума, в противном случае — максимума) находится по следующей формуле:

x_0 =  \frac{ - b}{2a}

Произведя вычисление по этой формуле получим следующие результаты:

1)

x_0 = 3

2)

x_0 = 1

3)

x_0 = 2

4)

x_0 =  -1

Примечание: Значение функции в точке x_0 можно найти 2 способами:

1. Подставив его в исходную функцию:

y_0 = f(x_0)

2) По формуле:

y_0 =  \frac{4ac -  {b}^{2} }{4a}

Примечание 2: x_0 также можно найти через нули квадратичной функции по следующей формуле:

x_0 =  \frac{x_1 +x_2}{2}

Пара (x_0; y_0) — координаты вершины параболы

Похожие вопросы