Предмет: Геометрия, автор: AmiFinker

Докажите, что все вершины четырехугольника ABCD лежат в одной плоскости, если его диагонали AC и BD пересекаются. Вычислите площадь четырёхугольника, если AC перпендикулярно BD; AC=6см; BD=8см

Ответы

Автор ответа: lardemorosandzigin
1

Ответ:

) Первый пункт задачи должен быть сформулирован так:

докажите, что все вершины четырехугольника АВСD лежат в одной плоскости, если его диагонали АС и ВD пересекаются.

Воспользуемся теоремой: через две пересекающиеся прямые можно провести плоскость и при том только одну.

Даны две пересекающиеся прямые АС и ВD. Проходящую через них плоскость обозначим α.

Прямая АС лежит в плоскости α, значит А∈α и В∈α.

Прямая ВD лежит в плоскости α, значит В∈α и D∈α.

Точки А, В, С, D принадлежат плоскости α, т.е. все вершины четырехугольника АВСD принадлежат плоскости α.

Что и требовалось доказать.

2) Рисунок к задаче прикреплен. Дан четырехугольник, у которого диагонали взаимно перпендикулярны и известны длины этих диагоналей (смотри рисунок).

Воспользуемся формулой для вычисления площади четырехугольника по двум диагоналям и углу между ними.

Похожие вопросы
Предмет: Английский язык, автор: Бибигул1