Предмет: Алгебра, автор: alenapilipcuk350

Нужны ответы на 73 77 79 номера

Приложения:

Ответы

Автор ответа: bbbapho
0

73 задание.

1)

 \frac{x}{y - 1}  +  \frac{2}{1 - y}  =  \frac{x}{y - 1}  +  \frac{2}{ - (y - 1)}  =  \frac{x}{y - 1}  -  \frac{2}{y - 1}  =  \frac{x - 2}{y - 1}

2)

 \frac{3c}{c - d}  +  \frac{3d}{d - c}  =  \frac{3c}{c - d}  +  \frac{3d}{ - (c - d)}  =  \frac{3c}{c - d}  -  \frac{3d}{c - d}  =  \frac{3c - 3d}{c - d}  =  \frac{3(c - d)}{c - d} 3

3)

 \frac{3m + 2n}{2m - 3n}  -  \frac{m - 8n}{3n - 2m}  =  \frac{3m + 2n}{2m - 3n}  -  \frac{m - 8n}{ - (2m - 3n)}  = \frac{3m + 2n}{2m - 3n} + \frac{m - 8n}{ 2m - 3n} =  \frac{3m + 2n + m - 8n}{2m - 3n}  =  \frac{4m - 6n}{2m - 3n}  = \frac{2(2m - 3n)}{2m - 3n}  = 2

4)

 \frac{ {b}^{2} }{2b - 14}  +  \frac{49}{14 - 2b}  = \frac{ {b}^{2} }{2b - 14}  +  \frac{49}{ - (2b - 14)}  =  \frac{ {b}^{2} }{2b - 14}   -   \frac{49}{ 2b - 14}  =    \frac{ {b}^{2}  - 49}{2b - 14}  =  \frac{ {b}^{2}  -  {7}^{2} }{2(b - 7)}  =  \frac{(b - 7)(b + 7)}{2(b - 7)}  =  \frac{b + 7}{2}

77 задание

1)

\frac{6a - 1}{16a - 8}  +  \frac{4a - 7}{16a - 8}  +  \frac{ - 2a - 2}{8 - 16a}  = \frac{6a - 1}{16a - 8}  +  \frac{4a - 7}{16a - 8}  +  \frac{ - (2a  +  2)}{ - (16a - 8)}  = \frac{6a - 1}{16a - 8}  +  \frac{4a - 7}{16a - 8}  +  \frac{ 2a  +  2}{ 16a - 8}  =  \frac{6a - 1 + 4a - 7 + 2a + 2}{16a - 8}  =  \frac{12a - 6}{16a - 8}  =  \frac{3(4a - 2)}{4(4a - 2)}  =  \frac{3}{4}

2)

 \frac{2 {a}^{2}  + 12a}{ {a}^{2} - 25 }  +  \frac{8a - 9}{25 -  {a}^{2} }  -  \frac{ {a}^{2}  + 14a - 16}{ {a}^{2}  - 25}  = \frac{2 {a}^{2}  + 12a}{ {a}^{2} - 25 }   + \frac{8a - 9}{-  ({a}^{2} - 25) }-  \frac{ {a}^{2}  + 14a - 16}{ {a}^{2}  - 25}  = \frac{2 {a}^{2}  + 12a}{ {a}^{2} - 25 }  - \frac{8a - 9}{{a}^{2} - 25 }-  \frac{ {a}^{2}  + 14a - 16}{ {a}^{2}  - 25} =  \frac{ 2 {a}^{2}  + 12a - 8a + 9 -  {a}^{2}  - 14a + 16}{{a}^{2}  - 25}  =  \frac{ {a}^{2}  - 10a  + 25}{ {a}^{2}  -  {5}^{2} }  =  \frac{ {(a - 5)}^{2} }{(a - 5)(a + 5)}  =  \frac{a - 5}{a + 5}

79 задание

1)

 \frac{ {x}^{2}  - 16x}{ {(x - 7)}^{4} }  +  \frac{2x + 49}{ {(7 - x)}^{4} }  =  \frac{ {x}^{2}  - 16x}{ {(x - 7)}^{4} }  +  \frac{2x + 49}{ {( - (x - 7))}^{4} }  = \frac{ {x}^{2}  - 16x}{ {(x - 7)}^{4} }  +  \frac{2x + 49}{ { (x - 7)}^{4} }  =  \frac{ {x}^{2} - 16x + 2x + 49 }{ {(x - 7)}^{4} }  =  \frac{ {x}^{2} - 14x + 49 }{ {(x - 7)}^{4} }  =  \frac{ {(x - 7)}^{2} }{ {(x - 7)}^{4} }  =  \frac{1}{ {(x - 7)}^{2} }

2)

 \frac{ {y}^{2} + y }{(y - 6)(y + 2)}  +  \frac{y + 36}{(6 - y)(2 + y)}  = \frac{ {y}^{2} + y }{(y - 6)(y + 2)}  +  \frac{y + 36}{ - (y - 6)(y + 2)}  = \frac{ {y}^{2} + y }{(y - 6)(y + 2)}   -   \frac{y + 36}{ (y - 6)(y + 2)}  =  \frac{ {y}^{2}  + y - y - 36}{(y - 6)(y + 2)}  =  \frac{ {y}^{2} - 36 }{(y - 6)(y + 2)}  =  \frac{ {y}^{2}  -  {6}^{2} }{(y - 6)(y + 2)}  =  \frac{(y - 6)(y + 6)}{(y - 6)(y + 2)}  =  \frac{y + 6}{y + 2}

Похожие вопросы
Предмет: Другие предметы, автор: лапиидж
Предмет: Математика, автор: Cchgdjbvcdn