Предмет: Математика, автор: nastyavalerievna1

Векторы а,b,c некомпланарны. найти значения параметра мю, при которых векторы p = a+b+c, q=a+2b+мюс,r=a-b+c некомпланарны

Ответы

Автор ответа: ilukin202
0

Ответ:

Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λn такие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.

Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.

Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.

Геометрические критерии линейной зависимости:

а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.

б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3 компланарны.

Примеры.

2.19.

Разложить вектор s=a+b+c по трем некомпланарным векторам: p=a+b−2c, q=a−b, r=2b+3c.

Решение.

Найдем такие α,β и γ, что s=αp+βq+γr:

s=a+b+c=α(a+b−2c)+β(a−b)+γ(2b+3c)=

=a(α+β)+b(α−β+2γ)+c(−2α+3γ).

Из этого равенства, приравнивая коэффициенты при a,b и c получаем систему уравнений:  

⎧⎩⎨⎪⎪1=α+β1=α−β+2γ1=−2α+3γ

Решим эту систему уравнений методом Крамера:

Δ=∣∣∣∣11−21−10023∣∣∣∣=−3−4−3=−10,

Δ1=∣∣∣∣1111−10023∣∣∣∣=−3+2−3=−4,

Δ2=∣∣∣∣11−2111023∣∣∣∣=3−4−2−3=−6,

Δ3=∣∣∣∣11−21−10111∣∣∣∣=−1−2−2−1=−6,

α=Δ1Δ=−4−10=25;β=Δ2Δ=−6−10=35;γ=Δ3Δ=−6−10=35.

 

Таким образом, s=25p+35q+35r.

Ответ: s=25p+35q+35r.

Пошаговое объяснение:

Похожие вопросы
Предмет: Русский язык, автор: PytjewaУтка