Алгебраические уравнения
Ответы
Дано кубическое уравнение x^3+5x^2-9x-45=0.
Иногда удаётся найти корень среди множителей свободного члена.
Так и для данного уравнения находим корень х = 3.
3³ + 5*3² - 9*3 - 45 = 27 + 45 - 27 - 45 = 0.
Делим многочлен x^3+5x^2-9x-45 на (х - 3).
x^3+5x^2-9x-45 | x-3
x^3-3x^2 x^2+8x+15
8x^2-9x
8x^2-24x
15x - 45
15x - 45
0.
Полученный квадратный трёхчлен раскладываем на множители, найдя его корни, которые будут и корнями кубического уравнения.
x^2+8x+15 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=8^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√4-8)/(2*1)=(2-8)/2=-6/2=-3;
x_2=(-√4-8)/(2*1)=(-2-8)/2=-10/2=-5.
Ответ: 3*(-3)*(-5) = 45.