Предмет: Геометрия, автор: Dariga200

what is the sum of the meausures of the interior angles of a polygon which has 20 diagonals​

Ответы

Автор ответа: 25hjoerf10
1

Ответ: 1080^o.

Объяснение:

If the number of diagonals is 20, then the number of corners is:

N=\dfrac{n(n-3)}{2} \\\\N \: - \: \text {number of diagonals};\\n \: - \: \text {number of angles}.\\

N=20\\\\20=\dfrac{n(n-3)}{2} \\\\n(n-3)=2 \cdot 20\\\\n^{2} -3n=40\\\\n^{2} -3n-40=0\\\\D=(-3)^{2} -4 \cdot (-40)=9+160=169=13^{2} \\\\n =\dfrac{3+13}{2} =8

Formula to find the sum of interior angles of a n-sided polygon:

S_{n} =(n-2) \cdot 180^o\\\\S_{n} =(8-2) \cdot 180^o=6 \cdot 180^o=1080^o

Похожие вопросы
Предмет: Алгебра, автор: Мэри3331