Предмет: Геометрия,
автор: kpokra946
средняя линия треугольника соеденяющая середины двух его сторон поралельно третей стороне и ровна половине этой стороны. Доказательства!!!
Ответы
Автор ответа:
0
Дано: ΔАВС, DE - средняя линия.
Доказать: 1) DE II AC
2) DE = 1/2 AC
Доказательство:
1) Через точку D проведем прямую, параллельную АС. Так как BD=CD (по условию), то по теореме Фалеса эта прямая пройдет через точку Е - середину АС, то есть прямая АС содержит среднюю линию DE,
значит DE II AC.
2) Проведем среднюю линию DF. DF II AB или DF II AE,
тогда очевидно, AEDF - параллелограмм (т.к. его противолежащие стороны параллельны)
тогда AF = ED (как противолежащие стороны параллелограмма),
но AF = FC, следовательно ЕD = 1/2 AC
Похожие вопросы
Предмет: Русский язык,
автор: DonMarko
Предмет: Русский язык,
автор: ира272
Предмет: Английский язык,
автор: Аноним
Предмет: Английский язык,
автор: 1Ksenia88811
Предмет: Математика,
автор: М0твей