Предмет: Геометрия,
автор: jivoj34273
В пирамиде ABCS ребро AS перпендикулярно основанию ABС и равно 4. Треугольник ABC равносторонний со стороной 2. Найдите высоту AH, проведенную к грани SBC. В ответе укажите значение 19·A
Приложения:
orjabinina:
решенная сегодня 2-а раза. Удалите вопрос
Ответы
Автор ответа:
2
Пусть B - начало координат
Ось X - BC
Ось Y - перпендикулярно X в направлении A
Ось Z - перпендикулярно ABC в направлении S
Координаты точек
С ( 2;0;0)
S ( 1; √3;4)
A ( 1; √3;0)
Уравнение плоскости SBC ( проходит через начало координат )
ax + by + cz = 0
Подставляем координаты точек S C
2a=0
a+√3b + 4c =0
Откуда a=0
Пусть b = 4/(√3) тогда с = -1
Уравнение плоскости SBC
4y/√3 - z = 0
Нормальное уравнение плоскости
k= √(16/3+1) = √(19/3)
4y/√19 - √3z/√19 =0
Подставляем координаты точки A в нормальное уравнение для нахождения расстояния от точки А до плоскости SBC ( оно же длина высоты AH )
4 * √3 / √19
По условию просят 19 * (4√3/√19 ) ^2 = 48
Похожие вопросы
Предмет: Русский язык,
автор: Ledidi791
Предмет: Английский язык,
автор: Energeticc
Предмет: Русский язык,
автор: deniskryukov0
Предмет: Математика,
автор: Ariana33331111