Помогите решить уравнение
Ответы
sin(x + 5/2x) = cosx + cos(5/2x) ⇔
2sin(x/2 + 5/4x)cos(x/2 + 5/4x) = 2cos(x/2 + 5/4x)cos(x/2 - 5/4x) ⇔
cos(x/2 + 5/4x)·(sin(x/2 + 5/4x) - cos(x/2 - 5/4x)) = 0 ⇒
cos(x/2 + 5/4x) = 0 or sin(x/2 + 5/4x) - cos(x/2 - 5/4x) = 0
a) cos(x/2 + 5/4x) = 0 ⇒ x/2 + 5/4x = π/2 + πk, k∈Z ⇒
2x² - 4x(π/2 + πk) + 5 = 0, D = 4²(π/2 + πk)² - 4·2·5 = 16(π/2 + πk)² - 40,
D ≥ 0 ⇒ 16(π/2 + πk)² - 40 ≥ 0 ⇒ (π/2 + πk)² ≥ 2,5 ⇒ |π/2 + πk| ≥ √2,5,
k∈Z ⇒ - √2,5 ≤ π(1/2 + k) ≤ √2,5 ⇒ - 0,5 - √2,5/π ≤ k ≤ - 0,5 + √2,5/π
√2,5/π ≈ 0,503 ⇒ -1,003 ≤ k ≤ 0,003 ⇒ k = {-1;0}. Тогда х = (4(π/2 + πk) ± (16(π/2 + πk)² - 40)^0,5)/4 = π/2 + πk ± ((π/2 + πk)² - 2,5)^0,5; для k = {-1;0} имеем: х₁₂ = (k = 0) = π/2 ± ((π/2)² - 2,5)^0,5,
х₃₄ = (k = - 1) = - π/2 ± ((π/2)² - 2,5)^0,5
б) sin(x/2 + 5/4x) - cos(x/2 - 5/4x) = 0 ⇒
cos(π/2 - x/2 - 5/4x) - cos(x/2 - 5/4x) = 0 ⇒
- 2sin(π/4 - 5/4x)·sin(π/4 - x/2) = 0 ⇒ sin(π/4 - 5/4x) = 0 or sin(π/4 - x/2) = 0.
1) sin(π/4 - 5/4x) = 0 ⇒ π/4 - 5/4x = πm, m∈Z ⇒
1/x = π(1 - 4m)/5 ⇒ x =
2) sin(π/4 - x/2) = 0 ⇒ π/4 - x/2 = πL, L∈Z ⇒ x = 0,5π(1 - 4L), L∈Z
Ответ: а) х₁₂₃₄ = ± π/2 ± ((π/2)² - 2,5)^0,5 б) x = , m∈Z
в) x = 0,5π(1 - 4L), L∈Z