Предмет: Математика, автор: Zoha12

Используя метод операционного исчисления найти решение удовлетворяющего начальным условиям

Приложения:

Ответы

Автор ответа: palilov243659
0

Ответ:

Пошаговое объяснение:

y''+y=6e^{-t}

пусть неизвестной функции-оригиналу y(t) соответствует изображение

Y(p), тогда y'(t)→pY(p)-y(0)=pY(p)-4

y''(t)→p²Y(p)-py(0)-y'(0)=p²Y(p)-4p+3

6e^{-t}\frac{6}{p+1}

отсюда для данного дифференциального уравнения получаем следующее операторное уравнение

p²Y(p)-4p+3=6/(p+1)⇒p²Y(p)=6/(p+1)+4p-3⇒p²Y(p)=(6+4p²+4p-3p-3)/(p+1)⇒

p²Y(p)=(4p²+p+3)/(p+1)⇒Y(p)=(4p²+p+3)/[p²(p+1)]

разложим правильную рациональную дробь на простейшие дроби

(4p²+p+3)/[p²(p+1)]=A/(p+1)+B/p²+C/p⇒(4p²+p+3)/[p²(p+1)]=(Ap²+Bp+B+Cp²+Cp)/[p²(p+1)]⇒4p²+p+3=(A+C)p²+(B+C)p+B⇒

{A+C=4, B+C=1, B=3⇒{B=3, C=-2, A=6

итак, Y(p)=6/(p+1)-2/p+3/p²

по свойству линейности

y(t)=6e^{-t} +3t-2

Похожие вопросы
Предмет: Английский язык, автор: golovanovanyut