Предмет: Математика, автор: cyxaruk12295

помогите
математика 10-11

Приложения:

Ответы

Автор ответа: Tilen
0

Ответ:

Пошаговое объяснение:

1. Угловой коэффициент равен значению производной в точке касания

y'=5e^{x-2}

y'(2)= 5e^{2-2}=5

2. \frac{x^2+2x-15}{x^2+1}<0

Знаменатель всегда положительный при любых значениях x, значит выражение в числителе меньше нуля

x^{2}+2x-15<0

Решаем методом интервалов

D=4-4*(-5)=64

x1=6/2=3   x2=-10/2= -5

____+___ -5 ____ -_____3_____+____

x∈(-5;3) целые решения -4, -3, -2, -1, 0, 1, 2

3. (4^{2})^\frac{3}{4}:4^{-\frac{1}{2} }=4^{\frac{3}{2}+\frac{1}{2}  }=x=4^{2}=16

5*25^{\frac{1}{2} } -(\frac{1}{81}) ^{-\frac{1}{4}=5*\sqrt{25}-\sqrt[4]{81}=5*5-3=22

Похожие вопросы