Предмет: Математика,
автор: milakamilat1m
Помогите решить интеграл: . Ответ должен быть
Simba2017:
xdx=d(x^2)/2
Ответы
Автор ответа:
1
Ответ:
∫ х ( sin(x²) )²dx = x²/4 - sin(2x²) /8 + C
Объяснение:
∫ х ( sin(x²) )²dx =
[ x² = t, dt = (x²)' * dx = 2x dx →
dx = dt / 2x]
= ∫ x (sin(t)) ² * dt / 2x =
= ∫ ( sin(t) )² dt / 2 =
= (1/2) * ∫ ( sin(t) )² dt =
= (1/2) * ∫ (( 1 - cos(2t) ) / 2) dt =
= (1/2) * (∫ dt / 2 + ∫ -cos(2t) dt /2) =
= (1/2) * (1/2) * (∫ dt - ∫ cos(2t) dt ) =
= (1/4) * (t + C1 - ∫ cos(2t) dt ) =
[ 2t = k, dk = (2t)' * dt = 2 dt →
dt = dk / 2]
= (1/4) * (t + C1 - ∫ cos(k) dk / 2 ) =
= (1/4) * (t + C1 - (1/2) ∫ cos(k) dk ) =
= (1/4) * (t + C1 - (1/2) * (sin(k) + C2) ) =
[ k = 2t ]
= (1/4) * ( t + C1 - sin(2t)/2 + C2 /2) =
= t/4 + C1 /4 - sin(2t) /8 + C2 /8 =
[t = x²]
= x²/4 + C1 /4 - sin(2x²) /8 + C2 /8 =
[ C1 /4 + C2 /8 = C є R, C1,C2єR]
= x²/4 - sin(2x²) /8 + C
Автор ответа:
2
Ответ:
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: Аноним
Предмет: Қазақ тiлi,
автор: Sonikkk21
Предмет: Українська мова,
автор: егор20077
Предмет: География,
автор: дашульчиклапульчик1