Предмет: Геометрия,
автор: ermilov2233
Решите пожалуйста задачу
Приложения:
Аноним:
Что нужно найти?
Ответы
Автор ответа:
0
Ответ: 723,7 ед².
Объяснение:
Решение.
S полная = 2S основания + S боковая.
В основаниях лежит равнобедренный треугольник, основание которого равен 6√3 и углом при вершине 30°.
Пусть боковые стороны равны х, тогда по т. косинусов:
cosA=(b²+c²-a²)/2bc; так как b=с и a=6√3, а cos30=√3/2, то:
√3/2=2x²- (6√3)²/2x²;
2x²*√3/2=2x²- 108;
1.73x²-2x²=-108;
0.27x²=108;
x²=400;
x=20 см - стороны основания.
Площадь основания равна
S основания=1/2(a*b*sin30°)=1/2(20*20*1/2)=100 см².
----------------
Площадь боковой поверхности S=P основания*Н, где
Р=(a+b+c)=20+20+6√3=40+6√3.
Так как угол С1ВС = 45°, то высота призмы Н=6√3. Тогда
S боковая = (40+6√3)*6√3 = 523,7.
------------
S полная =2*100+523.7=723,7 ед².
Похожие вопросы
Предмет: Русский язык,
автор: МайяБрусиловская
Предмет: Русский язык,
автор: puni12
Предмет: Другие предметы,
автор: skmiloserden
Предмет: Русский язык,
автор: диас474
Предмет: Русский язык,
автор: sbardash1