Предмет: Математика, автор: sergeygolyakher

Помогите решить.Математика 1 курс

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

1.

f(x) =  \frac{ {x}^{2} - 2 }{ {x}^{2}  + 2}  \\

f'(x) =  \frac{( {x}^{2} - 2)'( {x}^{2} + 2) - ( {x}^{2}  + 2)'( {x}^{2}    - 2)}{ {( {x}^{2}  + 2)}^{2} }  =  \\  =  \frac{2x( {x}^{2} + 2) - 2x( {x}^{2}  - 2) }{ {( {x}^{2} + 2) }^{2} }  =  \frac{2x( {x}^{2}  + 2 -  {x}^{2} + 2) }{ {( {x}^{2}  + 2)}^{2} }  =  \\  =  \frac{8x}{ {( {x}^{2}  + 2)}^{2} }

f'(1) =  \frac{8}{ {3}^{2} }  =  \frac{8}{9}  \\

2.

f(x) = ( {x}^{2}  - x) \cos {}^{2} (x)

f'(x) = ( {x}^{2}  - x) '\times  \cos {}^{2} (x)  + ( \cos {}^{2} (x)) ' \times ( {x}^{2}  - x) =  \\  =( 2x - 1) \cos {}^{2} (x)  + 2 \cos(x)   \times ( - \sin(x) ) \times ( {x}^{2}  - x) =  \\  = (2x - 1) \cos {}^{2} (x)  -  \sin(2x)  \times ( {x}^{2}  - x)

f'(0) =  - 1 \times 1 - 0 =  - 1

3.

1.

y = 2 {x}^{3}  -  {x}^{2}  +  \frac{1}{x {}^{4} }  \\

y' = 6 {x}^{2}  - 2x - 4 {x}^{ - 5}  = 6 {x}^{2}  - 2x -  \frac{4}{ {x}^{5} }  \\

y'(1) = 6 - 2 - 4 = 0

y'( - 2) = 6 \times 4 + 4 -  \frac{4}{( - 32)}  = 28 +  \frac{1}{8}  = 28 \frac{1}{8}  \\

2.

y = 2 \sin(x)  -  \frac{1}{4}  \cos(x)  \\ y '= 2 \cos(x)   +  \frac{1}{4} \sin(x)

y'( \frac{\pi}{6} ) = 2 \times  \frac{ \sqrt{3} }{2}   +  \frac{1}{4}  \times  \frac{1}{2}  =  \sqrt{3}   +   \frac{1}{8}  \\

y'( -  \frac{\pi}{4} ) = 2 \times  \frac{ \sqrt{2} }{2}   +  \frac{1}{4}  \times ( -  \frac{ \sqrt{2} }{2} ) =  \\  =  \sqrt{2}  -  \frac{ \sqrt{2} }{8}  =  \frac{7 \sqrt{2} }{8}

3.

y = 3 {x}^{2}  -  {x}^{3}  +  \frac{1}{ {x}^{3} }  \\

y' = 9x - 3 {x}^{2}  - 3 {x}^{ - 4}  = 9x - 3 {x}^{2}  -  \frac{3}{ {x}^{4} }  \\

y'(1) = 9 - 3 - 3 = 3

y'( - 2) =  - 18 - 3 \times 4 -  \frac{3}{16}  =  - 30 -  \frac{3}{16}  =  - 30 \frac{3}{16}  \\

4.

y =  \frac{1}{2}  \sin(x)  + 3 \cos(x)  \\ y '=  \frac{1}{2}  \cos(x)  - 3 \sin(x)

y'( \frac{\pi}{6} ) =  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2}  - 3 \times  \frac{1}{2}  =  \frac{ \sqrt{3} }{4}  -  \frac{3}{2}  \\

y'( -  \frac{\pi}{4} ) =  \frac{1}{2}  \times  \frac{ \sqrt{2} }{2}  +  \frac{3 \sqrt{2} }{2}  = ( \frac{1}{4}  +  \frac{3}{2} ) \sqrt{2}  =  \frac{7 \sqrt{2} }{4}  \\

5.

y =  {x}^{3}  - 3 {x}^{2}  -  \frac{1}{ {x}^{2} }  \\

y' = 3 {x}^{2}  - 6x +  \frac{2}{ {x}^{3} }  \\

y'(1) = 3 - 6 + 2 =  - 1

y'( - 2) = 12 + 12 +  \frac{2}{( - 8)} = 24 - 0.25 = 23.75 \\

6.

y = 3 \sin(x)  +  \frac{1}{4}  \cos(x)  \\ y' = 3 \cos(x)  -  \frac{1}{4}  \sin(x)

y'( \frac{\pi}{6} ) =  \frac{3 \sqrt{3} }{2}  -  \frac{1}{8}  \\

y'( -  \frac{\pi}{4} ) =  \frac{3 \sqrt{2} }{2}  +  \frac{ \sqrt{2} }{8}  =  \sqrt{2} ( \frac{3}{2}  +  \frac{1}{8} ) =  \frac{13 \sqrt{2} }{8}  \\

4.

f(x) =  \sin(x)  +  {x}^{2}  \\ f'(x) =  \cos(x)  + 2x

5.

1.

y' =  {e}^{x}  + x {e}^{x}  = e {}^{x} (x + 1)

2.

y' =  \frac{1}{2}  {(x - 2)}^{ -  \frac{1}{2} }  =  \frac{1}{2 \sqrt{x - 2} }  \\

3.

f'(x) =  ln(7)  \times  {7}^{ -  \cos(x) }  \times  \sin(x)  \\

4.

f'(x) =  \frac{1}{ \sin( \frac{x}{3} ) }  \times  \cos( \frac{x}{3} ) \times  \frac{1}{3}   =  \frac{1}{3}ctg( \frac{x}{3}  ) \\

5.

y '= 12 {x}^{3}  - 12 {x}^{2}

6.

y' =  \frac{5}{x}  - 2x \\

Похожие вопросы
Предмет: Қазақ тiлi, автор: 20maks0512345
Предмет: Английский язык, автор: Мирхат1
Предмет: Математика, автор: yroky