Предмет: Алгебра, автор: Аноним

Помогите решить срочно, прошу!!!!!! Дам 50 баллов
Вариант 1

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1.

z =  \frac{ ln(x +  {y}^{3} ) }{ \sqrt{ {x}^{2}  - 1} }  \\

z'_x =  \frac{( ln(x +  {y}^{3} ) )'_x \sqrt{ {x}^{2}  - 1} - ( \sqrt{ { x}^{2}  - 1} )' \times  ln(x +  {y}^{3} )  }{ {x}^{2}  - 1}  =  \\  =  \frac{ \frac{1}{x +  {y}^{3} }\times 1 \times  \sqrt{ {x}^{2} - 1 }   -  \frac{2x}{2 \sqrt{ {x}^{2} - 1 } }  \times  ln(x +  {y}^{3} ) }{ {x}^{2}  - 1}  =  \\  =  \frac{1}{ {x}^{2} - 1 } ( \frac{ \sqrt{ {x}^{2} - 1 } }{x +  {y}^{3} }  -  \frac{ ln(x +  {y}^{3} ) }{ \sqrt{ {x}^{2}  - 1} } ) =  \\  =  \frac{1}{(x +  {y}^{3}) \sqrt{x {}^{2}  - 1}  }  -  \frac{ ln(x +  {y}^{3} ) }{ \sqrt{ {( {x}^{2} - 1) }^{3} } }

z'_y =  \frac{1}{ \sqrt{ {x}^{2} - 1 } }  \times ( ln(x +  {y}^{3} ) )'_y =  \\  =  \frac{1}{ \sqrt{ {x}^{2} - 1 } }  \times  \frac{1}{x +  {y}^{3} }  \times (x +  {y}^{3} )'_y =  \\  =  \frac{3 {y}^{2} }{(x +  {y}^{3}) \sqrt{ {x}^{2} - 1 }  }

2.

z =  ln( \frac{1 +  \sqrt{ \sin(x) } }{ \sqrt{x {y}^{2} } } )  \\

z'_x =  \frac{1}{ \frac{1 +  \sqrt{ \sin(x) } }{ \sqrt{x {y}^{2} } } }  \times   \frac{(1 +  \sqrt{ \sin(x) } )' \times  \sqrt{x   {y}^{2} } -  y \times ( \sqrt{x} )'(1 +  \sqrt{ \sin(x) } )}{x {y}^{2} }  = \\  =  \frac{ \sqrt{x {y}^{2} } }{1  +  \sqrt{ \sin(x)} }  \times  \frac{ \frac{ \cos(x) }{2 \sqrt{ \sin(x) } }  \times y \sqrt{x} -  \frac{y}{2 \sqrt{x} } (1 +  \sqrt{ \sin(x) } ) }{x {y}^{2} }  =  \\  =  \frac{1}{ \sqrt{x {y}^{2} }(1 +  \sqrt{ \sin(x) }  )} ( \frac{y \sqrt{x} \cos(x)  }{2 \sqrt{ \sin(x) } }  -  \frac{y(1 +  \sqrt{ \sin(x) }) }{2 \sqrt{x} } )

z'_y =  \frac{ \sqrt{x {y}^{2} } }{1 +  \sqrt{ \sin(x) } }  \times  \frac{1 +  \sqrt{ \sin(x) } }{ \sqrt{x} }  \times ( \sqrt{ {y}^{2} } ) '=  \\  =  \frac{ \sqrt{x {y}^{2} } }{ \sqrt{x} }  \times 1 =  \sqrt{ {y}^{2} }  =  |y|

3.

z =  \frac{arccos(x {y}^{2}) }{ \sqrt{x + y} }  \\

z'_x =  \frac{ -  \frac{1}{ \sqrt{1 -  {x}^{2} {y}^{4}  } }  \times  {y}^{2}  \times  \sqrt{x + y} -  \frac{1}{2 \sqrt{x + y} } \times arccos(x {y}^{2} )  }{x + y}  =  \\  =   - \frac{1}{x + y} ( \frac{ {y}^{2}  \sqrt{x + y} }{ \sqrt{1 -  {x}^{2}  {y}^{4} } }  +  \frac{arccos(x {y}^{2} )}{2 \sqrt{x + y} } ) =  \\  =  -  \frac{ {y}^{2} }{ \sqrt{(x + y)(1 -  {x}^{2} {y}^{4} ) } }   -  \frac{arccos(x {y}^{2}) }{2 \sqrt{ {(x + y)}^{3} } }

z'_y =  \frac{ -  \frac{1}{ \sqrt{1 -  {x}^{2}  {y}^{4} } }  \times 2xy \times  \sqrt{x + y} -  \frac{1}{2 \sqrt{x + y} }arccos(x {y}^{2})   }{x + y}  =  \\  =  -  \frac{2xy}{ \sqrt{(x + y)(1 -  {xy}^{2} )} }  -  \frac{arccos(x {y}^{2} )}{2 \sqrt{ {(x + y)}^{3} } }

Похожие вопросы
Предмет: Русский язык, автор: Nikita5081