Предмет: Алгебра, автор: Inkognito775

Рассчитай расстояние вершины куба до диагонали куба, которая не проходит через эту вершину, если ребро куба — 51 см.

Ответы

Автор ответа: Steec
0

Ответ:

Рассчитай расстояние вершины куба до диагонали куба, которая не проходит через эту вершину, если ребро куба — 45 см

Объяснение:

Пусть АВСМА₁В₁С₁М₁-куб, АВ=45см. Все грани равные квадраты.Расстоянием от вершины С₁ до диагонали В₁М будет длина перпендикуляра С₁К.

Найдем диагональ квадрата по т. Пифагора ⇒ 45√2 см.

Найдем диагональ куба d²=45²+45²+45² , d²=3*45² , d=45√3 см.

ΔМВ₁С₁- прямоугольный, т.к. проекция М₁С₁⊥ В₁С₁ , то и наклонная МС₁⊥В₁С₁ по т. о трех перпендикулярах. Используя формулу площади треугольника :

S(В₁С₁М)=1/2*В₁С₁*С₁М или S(В₁С₁М)=1/2*В₁М*С₁К ⇒

S(В₁С₁М)=1/2*45*45√2 , подставим во вторую формулу, получим :

1/2*45*45√2=1/2*45√3*С₁К или С₁К=(45√2)/√3=(45√6)/3=15√6 (см)

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: ozodbeksaparov
Предмет: Математика, автор: IvanPostnov