Предмет: Алгебра,
автор: МК2005
Найти остаток при делении 2^2011 на 5
Ответы
Автор ответа:
2
Ответ:
Тут нужно поймать закономерность и рассмотреть последовательность остатков степеней двойки при делении на 5 Степени: 2, 4, 8, 16, 32, 64, 128, 256, 512 2,4, 3, 1, 2, 4, 3, 1, 2... Итак, видим последовательность из 4 остатков, цикляшуюся снова и снова. Это достаточно очевидно, ведь степени двойки кончаются на 2, 4, 8, 6 и по кругу, а 2, 4, 3, 1 - это те же числа по модулю 5. 2' имеет остаток 2 Значит и 2^2009 имеет остаток 2, 2^2010 остаток 4 а 2^2011 остаток
Похожие вопросы
Предмет: Русский язык,
автор: 777777725
Предмет: Окружающий мир,
автор: эльдар27
Предмет: Окружающий мир,
автор: эльдар27
Предмет: Английский язык,
автор: Аноним
Предмет: Окружающий мир,
автор: прошу29