Предмет: Геометрия,
автор: franksterik
Около правильного шестиугольника описана окружность и в него вписана окружность. Длина большей окружности равна 4π. Найдите площадь кольца
Помогите пожалуйста
Ответы
Автор ответа:
0
Ответ:
решение
Объяснение:
Радиус описанной (большей) окружности R=L/2pi=4pi/2pi=2
Сторона правильного шестиугольника равна радиусу описанной окружности a=R=2
Радиус вписанной окружности r=a*sqrt(3)/2=2*sqrt(3)/2=sqrt(3)
Площадь правильного шестиугольника Sш-3*sqrt(3)*R^2/2=3*sqrt(3)*4/2=6*sqrt(3)
Sопис. окр=pi*R^2=4*pi
Sвпис. окр. =pi*r^2=3*pi
Sкольца=4*pi-3*pi=pi
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Русский язык,
автор: zsd1
Предмет: Русский язык,
автор: Ким45
Предмет: Математика,
автор: keuromix
Предмет: Литература,
автор: ldallakyan88p5n5wu