Предмет: Математика,
автор: 2282282282282566
1. Окружность радиуса 2 см внешне касается другой окружности в
точке А. Общая касательная двух окружностей, проведенная
через точку А, пересекается с другой их общей касательной в
точке В. Найдите радиус другой окружности, если длина отрез-
ка АВ равна 4 см.
Приложения:
Ответы
Автор ответа:
3
Точка касания двух окружностей (A) лежит на линии центров (O1O2)
Радиус в точку касания перпендикулярен касательной => O1O2⊥BA
По теореме об отрезках касательных из одной точки
BO1 - биссектриса ∠ABC, BO2 - биссектриса ∠ABD
(Док-во: △O1CB=△O1AB по катету (радиусы) и общей гипотенузе)
Биссектрисы смежных углов перпендикулярны, ∠O1BO2=90
BA - высота из прямого угла в △O1BO2
BA^2 =O1A*O2A => O2A =16/2 =8 (см)
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: вика484
Предмет: Русский язык,
автор: vaniasparta
Предмет: Французский язык,
автор: Malva13
Предмет: Русский язык,
автор: PolinaLisova
Предмет: Русский язык,
автор: зарина316