Предмет: Математика, автор: eka1388

Две хорды, проведенные в окружности, пересекаются в точке 0. Хорда AB
делится этой точкой на два равных отрезка, а D0 = 32, 0C = 2. Найди
длину хорды AB.

Приложения:

Ответы

Автор ответа: Удачник66
5

Ответ:

Пошаговое объяснение:

По таким данным задачу решить невозможно.

Мы не знаем радиуса круга.

Мы не знаем, является ли DC диаметром круга, хотя на рисунке он выглядит, как диаметр.

Мы не знаем, перпендикулярны эти хорды или нет, хотя на рисунке они выглядят, как перпендикулярные..

Но, если предположить, что DC - диаметр, и DC = 32+2=34, а хорда AB перпендикулярна к DC, то можно решить через т. Пифагора.

{ AD^2 = AO^2 + DO^2 = AO^2 + 32^2

{ AC^2 = AO^2 + OC^2 = AO^2 + 2^2

{ AD^2 + AC^2 = CD^2 = 34^2

Вычисляем квадраты

{ AD^2 = AO^2 + 1024

{ AC^2 = AO^2 + 4

{ AD^2 + AC^2 = 1156

Подставляем 1 и 2 уравнения в 3 уравнение

AO^2 + 1024 + AO^2 + 4 = 1156

2*AO^2 = 1156 - 1024 - 4 = 128

AO^2 = 128 : 2 = 64

AO = √64 = 8

Хорда AB = 2*AO = 2*8 = 16

Похожие вопросы
Предмет: Технология, автор: аноним332
Предмет: Алгебра, автор: Goodzeep