ОЧЕНЬ СРОЧНО ПОЖАЛУЙСТА 20 ВАРИАНТ СРОЧНО!!!!!
Ответы
Ответ:
1
2
3
4
5
6
7
Ответ:
′
(x)=5×6x
5
−8+0=30x
5
−8
2
\begin{gathered}f(x) = \frac{3 }{ {x}^{8} } - \frac{ {x}^{9} }{3} + 6 \sqrt{x} = \\ = 3 {x}^{ - 8} - \frac{ {x}^{9} }{3} + 6 {x}^{ \frac{1}{2} } \end{gathered}
f(x)=
x
8
3
−
3
x
9
+6
x
=
=3x
−8
−
3
x
9
+6x
2
1
\begin{gathered}f'(x) = 3 \times ( - 8) {x}^{ - 9} - \frac{1}{3} \times 9 {x}^{8} + 6 \times \frac{1}{2} {x}^{ - \frac{1}{2} } = \\ = - \frac{24}{ {x}^{9} } - 3 {x}^{8} + \frac{3}{ \sqrt{x} } \end{gathered}
f
′
(x)=3×(−8)x
−9
−
3
1
×9x
8
+6×
2
1
x
−
2
1
=
=−
x
9
24
−3x
8
+
x
3
3
\begin{gathered}f'(x) = (tgx)'(x - 4) + ( x - 4)' \times tgx = \\ = \frac{x - 4}{ \cos {}^{2} (x) } + tgx\end{gathered}
f
′
(x)=(tgx)
′
(x−4)+(x−4)
′
×tgx=
=
cos
2
(x)
x−4
+tgx
4
\begin{gathered}f(x) = \frac{ {x}^{6} - 1} { \sin(x) } \\ \end{gathered}
f(x)=
sin(x)
x
6
−1
\begin{gathered}f'(x) = \frac{( {x}^{6} - 1)' \times \sin(x) - (\sin(x))' ( {x}^{6} - 1) }{ \sin {}^{2} (x) } = \\ = \frac{6 {x}^{5} \sin(x) - \cos(x) \times ( {x}^{6} - 1) }{ \sin {}^{2} (x) } \end{gathered}
f
′
(x)=
sin
2
(x)
(x
6
−1)
′
×sin(x)−(sin(x))
′
(x
6
−1)
=
=
sin
2
(x)
6x
5
sin(x)−cos(x)×(x
6
−1)
5
\begin{gathered}f'(x) = ( {x}^{4} - 3)'(x + 4) + (x + 4)'( {x}^{4} - 3) = \\ = 4 {x}^{3} (x + 4) + 1 \times ( {x}^{4} - 3) = \\ = 4 {x}^{4} + 16 {x}^{3} + {x}^{4} - 3 = \\ = 5 {x}^{4} + 16 {x}^{3} - 3\end{gathered}
f
′
(x)=(x
4
−3)
′
(x+4)+(x+4)
′
(x
4
−3)=
=4x
3
(x+4)+1×(x
4
−3)=
=4x
4
+16x
3
+x
4
−3=
=5x
4
+16x
3
−3
6
\begin{gathered}f'(x) = 7 (5 {x}^{6} - 4) {}^{6} \times (5 {x}^{6} - 4) '= \\ = 7 {(5 {x}^{6} - 4) }^{6} \times 30 {x}^{5} = \\ = 210 {x}^{ 5} {(5 {x}^{6} - 4) }^{6} \end{gathered}
f
′
(x)=7(5x
6
−4)
6
×(5x
6
−4)
′
=
=7(5x
6
−4)
6
×30x
5
=
=210x
5
(5x
6
−4)
6
7
\begin{gathered}f'(x) =( {(3 - {x}^{5}) }^{ \frac{1}{2} } ) '= \frac{1}{2} {(3 - {x}^{5} )}^{ - \frac{1}{2} } \times (3 - {x}^{5} ) '= \\ = \frac{1}{2 \sqrt{3 - {x}^{5} } } \times ( - 5 {x}^{4} ) = - \frac{5 {x}^{4} }{2 \sqrt{3 - {x}^{5} } } \end{gathered}
f
′
(x)=((3−x
5
)
2
1
)
′
=
2
1
(3−x
5
)
−
2
1
×(3−x
5
)
′
=
=
2
3−x
5
1
×(−5x
4
)=−
2
3−x
5
5x
4