Предмет: Математика,
автор: BTSTXTKPOP
1.Из середины стороны АВ треугольника АВС опущены перпендикуляр длиной 4 см на сторону АС. Найдите длину высоты в треугольнике проведённую из вершины В.
2. В прямоугольной треугольнике длины перпендикуляров, опущенных из середины гипотенузы на катеты, соответственно равны 6см и 4,5 см. Найдите гипотезу треугольника.
Приложения:
BTSTXTKPOP:
Помогите
Ответы
Автор ответа:
2
Ответ:
1) 8см 2)15см
Пошаговое объяснение:
1)высота BH
т.к. треугольники подобны и точка лежит посередине, то коээфициент подобия=2
4*2=8см
2)
т.к. перпендикуляры проведены из середины гипотенузы, то по теореме фалеса, перпендикуряры делят катеты пополам, значит длина одного катета 4,5*2=9, а длина второго - 6*2=12
по теореме Пифагора
9²+12²=с²
81+144=с²
с²=225
с=15
Похожие вопросы
Предмет: Русский язык,
автор: lfursa1975
Предмет: Английский язык,
автор: katgera1998
Предмет: Русский язык,
автор: blonda777
Предмет: Математика,
автор: KaMaR12211
Предмет: Геометрия,
автор: MstyanKristina