Предмет: Математика, автор: mikedonaldor

Найдите производную.

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

1.

y' = 0

2.

y' = 6 \times 9 {x}^{8}  - 7 - 0 = 54 {x}^{8}  - 7

3.

y' =  {e}^{3x}  \times (3x) '+ 3 {x}^{2}  = 3 {e}^{3x}  + 3 {x}^{2}

4.

y' =  {e}^{4x + 1}  \times (4x + 1)' + 4 \times 3 {x}^{2}  =  \\  = 4 {e}^{4x + 1}  + 12 {x}^{2}

5.

y' =  ln(3)  \times  {3}^{x}  - ( - 3) {x}^{ - 4}  =  \\  =  ln(3)  \times  {3}^{x}  +  \frac{3}{ {x}^{4} }

6.

y' =  \frac{4}{x}  +  ln(3)  \times  {3}^{x}  \\

7.

y' =  \cos(x)  - 0 =  \cos(x)

8.

y' = ( {x}^{2}  + 2)'( {x}^{3}  - x) + ( {x}^{3}  - x)'( {x}^{2}  + 2) =  \\  = 2x( {x}^{3}  - x) + (3 {x}^{2}  - 1)( {x}^{2}  + 2) =  \\  = 2 {x}^{4}  - 2 {x}^{2}  + 3 {x}^{4}  + 6 {x}^{2}  -  {x}^{2}  - 2 =  \\  = 5 {x}^{4}  + 3 {x}^{2}  - 2

9.

y '=  \frac{( {x}^{3} + 1)'(x + 2) - (x + 2)'( {x}^{3}   + 1)}{ {(x + 2)}^{2} }  =  \\  =  \frac{3 {x}^{2}(x + 2) - 1 \times ( {x}^{3}   + 1)}{ {(x + 2)}^{2} }  =   \\ =  \frac{3 {x}^{3} + 6 {x}^{2}  -  {x}^{3} - 1  }{ {(x + 2)}^{2} }  =  \frac{2 {x}^{3} + 6 {x}^{2}   - 1}{ {(x + 2)}^{2} }

Похожие вопросы
Предмет: Русский язык, автор: MrNorm132