Предмет: Математика, автор: коломбучик

На решение есть ещё 40 минут

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1.

z = 9 {y}^{2}  - 3 {x}^{4}  + 2

z'_x =  - 12 {x}^{3}

z'_y = 18y

2.

z = (7 {x}^{2}  - 8 {x}^{2}  {y}^{5}  + 16y) {}^{2}

z'_x = 2(7 {x}^{2}  - 8 {x}^{2}  {y}^{5}  + 16y) \times (14x - 14x {y}^{5} ) =  \\

z'_y = 2(7 {x}^{2}  - 8 {x}^{2}  {y}^{5} + 16y) \times ( - 40 {x}^{2}   {y}^{4}  + 16) \\

3.

z = 10 \sin( {x}^{2} - 3 {y}^{5}  )

z'_x = 10 \cos( {x}^{2} - 3 {y}^{5}  )  \times 2x =  \\  = 10x \cos( {x}^{2}  - 3 {y}^{5} )

z'_y= 10 \cos( {x}^{2}  - 3 {y}^{5} )  \times ( - 15 {y}^{4} ) =  \\  =  - 150 {y}^{4}  \cos( {x}^{2}  - 3 {y}^{5} )

________________

4.

z = 10 {x}^{2} y - 2x {y}^{2}  + 6tgx

z'_x = 20xy - 2 {y}^{2}  +  \frac{6}{ \cos {}^{2} (x) }  \\

z'_y = 10 {x}^{2}  - 4xy

z''_{xx} = 20y + 6 \times ( - 2)( \cos(x) ) {}^{ - 3}  \times ( -  \sin(x))  =  \\  = 20y +  \frac{12 \sin(x) }{ \cos {}^{3} (x) }

z''_{yy} =  - 4x

z''_{xy} = 20x - 4y

5.

z = 3 ln(10x - 6y)

z'_x =  \frac{3}{10x - 6y}  \times 10 =  \frac{30}{10x - 6y}  \\

z'_y =  \frac{3}{10x - 6y}  \times ( - 6) =  -  \frac{18}{10x - 6y}  \\

z''_{xx} = 30 \times ( - (10x - 6y)) {}^{ - 2}  \times 10 =  \\  =  -  \frac{300}{ {(10x - 6y)}^{2} }

z''_{yy} =  - 18 \times ( - (10x - 6y) {}^{ - 2} ) \times ( - 6) =  \\  =  -  \frac{108}{ {(10x - 6y)}^{2} }

z''_{xy} = 30 \times ( - (10x - 6y) {}^{ - 2} ) \times ( - 6) =  \\  =  \frac{180}{ {(10x - 6y)}^{2} }

Похожие вопросы