Предмет: Алгебра, автор: bondarevaa721

Дам 100 баллов! Сделайте пожалуйста 13 и 14

Приложения:

bondarevaa721: Точно?

Ответы

Автор ответа: Miroslava227
1

14.

1)

У треугольника сумма двух сторон должна быть больше третьей

2 + 3 > 5  \\ (\text{не выполняется})\\ 2 + 5 > 3 \\ 3 + 5 > 2

Такого треугольника не существует, утверждение верное

2) Неверно

3)

Нет, неверно. У окружностей с разными радиусами точка будет удалена на радиус каждой окружности.

Ответ: 1

Приложения:
Автор ответа: Universalka
0

<C=90^{0}\\\\AB=20\\\\SinA=\frac{\sqrt{21} }{5}\\\\CosA=\sqrt{1-Sin^{2}A }=\sqrt{1-\frac{21}{25} }=\sqrt{\frac{4}{25}}=\frac{2}{5}\\\\CosA=\frac{AC}{AB} \\\\AC=AB*CosA=20*\frac{2}{5} =8\\\\\boxed{AC=8}

14)

1)Пусть стороны равны: a = 2, b = 3 и с = 5.

Согласно неравенству треугольника длина любой стороны должна быть меньше суммы длин остальных сторон, то есть :

a < b + c

b < a + c

c < a + b

Подставим данные в неравенство:

2 < 3 + 5 правильно

3 < 2 + 5 правильно

5 < 2 + 3 неправильно (точки лежат на одной прямой)

Ответ: треугольник со сторонами 2,3,5 не существует

Значит - это верное утверждение.

2) Боковые стороны  равны только у равнобедренной трапеции.Значит - это неверное утверждение.

3) Точка пересечения двух окружностей равноудалена от центров этих окружностей - это неверное утверждение так как точка  находится на расстояниях, равных радиусам каждой окружности. Если радиусы различны, то и расстояния различны.

Ответ под номером 1.

Похожие вопросы