Предмет: Геометрия,
автор: antipova248
Периметр треугольника равен 12. Докажите, что расстояние от любой точки плоскости до хотя бы одной из его вершин больше 2.
Ответы
Автор ответа:
0
Одно из основных свойств треугольника:
Любая сторона треугольника меньше суммы двух других сторон и больше их разности
( a < b + c,
a > b – c;
и это верно для каждой стороны любого треугольника.
Сумма двух сторон треугольника периметра 12
должна быть обязательно больше его полупериметра, иначе треугольник не получится.
И поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка- до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 2.
Предположим, существует такая точка, расстояние от которой до вершин треугольника не больше 2-х.
Тогда она при соединении с каждой парой вершин треугольника должна образовать треугольник, сумма длин двух сторон которого 4 или меньше,
а третья сторона - обязательно меньше этой суммы по одному из основных свойств треугольника.
Это верно для каждой пары вершин, и в итоге получится, что
каждая сторона исходного треугольника меньше 4, а его периметр меньше 12,
что противоречит условию задачи.
Следовательно, расстояние от любой точки плоскости до хотя бы одной из вершин треугольника с периметром 12 больше 2-х, что и требовалось доказать.
-----
[email protected]
Любая сторона треугольника меньше суммы двух других сторон и больше их разности
( a < b + c,
a > b – c;
и это верно для каждой стороны любого треугольника.
Сумма двух сторон треугольника периметра 12
должна быть обязательно больше его полупериметра, иначе треугольник не получится.
И поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка- до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 2.
Предположим, существует такая точка, расстояние от которой до вершин треугольника не больше 2-х.
Тогда она при соединении с каждой парой вершин треугольника должна образовать треугольник, сумма длин двух сторон которого 4 или меньше,
а третья сторона - обязательно меньше этой суммы по одному из основных свойств треугольника.
Это верно для каждой пары вершин, и в итоге получится, что
каждая сторона исходного треугольника меньше 4, а его периметр меньше 12,
что противоречит условию задачи.
Следовательно, расстояние от любой точки плоскости до хотя бы одной из вершин треугольника с периметром 12 больше 2-х, что и требовалось доказать.
-----
[email protected]
Похожие вопросы
Предмет: Геометрия,
автор: gnatiukslavik
Предмет: Физика,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: История,
автор: Egorqaaa
Предмет: Алгебра,
автор: fanvarya