Предмет: Алгебра, автор: sxgpups

Произведение двух последовательных четных чисел не превышает 300. Найди максимально возможную сумму последовательных четных чисел.
Ответ:

Ответы

Автор ответа: bena20193
3

Ответ:

34

Объяснение:

пусть первое число 2n

а второе 2n+2

2n(2n+2)≤300

4n²+4n-300≤0 разделим на 4

n²+n-75≤0

решим методом интервалов

n²+n-75=0

Найдем дискриминант квадратного уравнения:

D = b² - 4ac = 1 - 4·1·(-75) = 1 + 300 = 301

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x₁=   (-1 - √301)/ 2  ≈ -9.1747

x₂ =  ( -1 + √301)/ 2  ≈ 8.1747

по свойству квадратичной функции т.к. старший коэффициент квадратного уравнения равен 1 и 1>0 ветки направлены вверх

тогда решением неравенства будет область между корнями

----------------------(x₁)-------------(x₂)--------------------->

   +                             -                      +

n²+n-75≤0 при х∈[x₁;x₂]

так как нам требуется максимально возможная сумму последовательных четных чисел то выбираем наибольшее положительное четное число из интервала [x₁;x₂] что приближенно равно [-9.1 ;8,1]

это число n=8

тогда 2n=2*8=16 первое число

2n+2=16+2=18  второе число

16*18=288≤300  

16+18=34  это максимально возможная сумма последовательных четных чисел, произведение которых не превышает 300


sxgpups: С П А С И Б О !
Похожие вопросы
Предмет: Русский язык, автор: гарибова1972
Предмет: Математика, автор: Аноним