Предмет: Математика, автор: FreshMin7

Решить все примеры(там стоят штрихи, то бишь производные ​

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1.

(3 {x}^{6}  - 14 {x}^{3}  + 34)' = 18 {x}^{5}  - 42 {x}^{2}  \\

2.

( - 13 {x}^{ - 4}  - 4 {x}^{3} )' = 52 {x}^{ - 5}  - 12 {x}^{2}  =  \\  =  \frac{52}{ {x}^{5} }  - 12 {x}^{2}

3.

(4 {x}^{ \frac{3}{2} }  -  \frac{1}{3}  {x}^{9}  + 6)' = 4 \times  \frac{3}{2}  {x}^{ \frac{1}{2} }  -  \frac{1}{3}  \times 9 {x}^{8}  + 0 =  \\  = 6 \sqrt{x}  - 3 {x}^{8}

4.

( \frac{3}{7}  {x}^{21}  - 2 {x}^{ \frac{3}{2} }  + 1.3)' =  \frac{3}{7}  \times 21 {x}^{20}  - 2 \times  \frac{3}{2}   {x}^{ \frac{1}{2} }   + 0 =  \\  = 9 {x}^{20}  - 3 \sqrt{x}

5.

( {x}^{ - 2}  + 3 {x}^{4} )' =  - 2 {x}^{ - 3}  + 12 {x}^{3}  =  \\  =  -  \frac{2}{ {x}^{3} }  + 12 {x}^{3}

6.

( {x}^{ - 1}  - 3 {x}^{4} )' =  -  {x}^{ - 2}  - 12 {x}^{3}  =  -  \frac{1}{ {x}^{2} }  - 12 {x}^{3}  \\

7.

( -  {x}^{ \frac{8}{7} }  + 2 {x}^{5}  + 14) '=  -  \frac{8}{7}  {x}^{ \frac{1}{7} }  + 10 {x}^{4}  =  \\  =  -  \frac{8}{7}  \sqrt[7]{x}  + 10 {x}^{4}

8.

(ctg4x)' =  -  \frac{1}{ \sin {}^{2} (4x) }  \times (4x) '=  -  \frac{4}{ \sin {}^{2} (4x) }  \\

9.

((6 + x) {}^{4} )' = 4 {(6 + x)}^{3}

10.

( {(5x - 8)}^{ \frac{1}{2} } )' =  \frac{1}{2}  {(5x - 8)}^{ -  \frac{1}{2} }  \times (5x - 8)' =  \\  =  \frac{5}{2 \sqrt{5x - 8} }

11.

(7 { \cos(3x)) }^{ - 2} )' = \\  =   - 14 {( \cos(3x) )}^{ - 3}  \times ( \cos(3x))'  \times (3x) '=  \\  =  -  \frac{14}{ \cos {}^{2} (3x) }  \times ( -  \sin(3x))  \times 3 =  \frac{42 \sin(3x) }{ \cos {}^{2} (3x) }

12.

( {(3x + 4)}^{ \frac{2}{9} } )' =  \frac{2}{9}  {(3x + 4)}^{ -  \frac{7}{9} }  \times (3x + 4)' =  \\  =  \frac{2}{9 \sqrt[9]{ {(3x + 4)}^{7} } }  \times 3 =  \frac{2}{3 \sqrt[9]{ {(3x + 4)}^{7} } }

13.

( \cos {}^{5} (x)) ' = 5 \cos {}^{4} (x)  \times ( -  \sin(x))  =  \\  =  - 5 \sin(x)  \cos {}^{4} (x)

14.

(4 +  {x}^{7} )'(5 - 5x +  {x}^{3} ) + (5 - 5x +  {x}^{3} )'(4 +  {x}^{7} ) =  \\  = 7 {x}^{6} (5 - 5x +  {x}^{3} ) + ( - 5 +  3{x}^{2} )(4 +  {x}^{7} ) =  \\  = 35 {x}^{6}  - 35 {x}^{7}  + 7 {x}^{9}  - 20 - 5 {x}^{7}  + 12 {x}^{2}  + 3 {x}^{9}  =  \\  = 35 {x}^{6}  - 40 {x}^{7}  + 10 {x}^{9}  + 12 {x}^{2}  - 20

15.

(4x  + 2)' \sqrt[4]{x - 2}  + ( {(x - 2)}^{ \frac{1}{4} } )'(4x + 2) =  \\  = 4 \sqrt[4]{x - 2}  +  \frac{1}{4}  {(x - 2)}^{ -  \frac{3}{4} } (4x + 2) =  \\  = 4 \sqrt[4]{x - 2}  +  \frac{2x + 1}{ \sqrt[4]{ {(x - 2)}^{3} } }

16.

( \frac{3x + 1}{3 + 2x})'  =  \frac{(3x + 1)'(3 + 2x) - (2x + 3)'(3x + 1)}{ {(2x + 3)}^{2} }  =  \\  =  \frac{3(2x + 3) - 2(3x + 1)}{ {(2x + 3)}^{2} }  =  \frac{6x + 9 - 6x - 2}{ {(2x + 3)}^{2} }  =  \\  =  \frac{7}{ {(2x + 3)}^{2} }

17.

 \frac{( \sqrt[3]{x} )'(4 +  {x}^{5}) - ( {x}^{5} + 4)' \sqrt[3]{x}   }{ {( {x}^{5}  + 4)}^{2} }  =  \\  =  \frac{ \frac{1}{3 \sqrt[3]{ {x}^{2} } }(4 +  {x}^{5} ) - 5 {x}^{4}   \sqrt[3]{x} }{ {( {x}^{5}  + 4)}^{2} }  =  \\  =  \frac{ \frac{4}{3 \sqrt[3]{ {x}^{2} } } +  \frac{1}{3}   {x}^{4}  \sqrt[3]{x}  - 5 {x}^{4} \sqrt[3]{x}  }{ {( {x}^{5} + 4) }^{2} }  =  \\  =  \frac{ \frac{4}{3 \sqrt[3]{ {x}^{2} } }  -  \frac{14}{3} {x}^{4}  \sqrt[3]{x}  }{ {( {x}^{5} + 4) }^{2} }

18.

( \frac{ {x}^{6}  + 3}{ \sqrt[3]{x - 9} } )' =  \frac{6 {x}^{5} \sqrt[ 3]{x - 9}   -  \frac{1}{3 \sqrt[3]{ {x - 2)}^{2} } }( {x}^{6}   + 3)}{ \sqrt[3]{ {(x - 9)}^{2} } }  \\

Похожие вопросы
Предмет: Қазақ тiлi, автор: эля172
Предмет: Алгебра, автор: Викториятян1