Предмет: Алгебра, автор: tritenkomaria45

реши неравенство методом интервалов (3-х)(7х+1)<5х+2
Помогите пожалуйста ​

Ответы

Автор ответа: lakOR555
1

Ответ:

(-∞; (15 - √253) / 14)  ∪ ((15 + √253) / 14; +∞)

Объяснение:

(3 - х)(7х + 1) < 5х + 2

21х + 3 - 7х² - х < 5x + 2

-7x² + 20x + 3 < 5x + 2

-7x² + 20x - 5x + 3 - 2 < 0

-7x² + 15x + 1 = 0

D = 15² - 4 * (-7) = 225 + 28 = 253

√D = √253

x₁ = (-15 - √253) / (-7 * 2) = -(15 + √253) / (-14) = (15 + √253)/14 (примерно 2,207)

x₂ = (-15 + √253) / (-7 * 2) = -(15 - √253) / (-14) = (15 - √253) / 14 (примерно -0,06)

начертим координатную прямую (см. рис)

подставим -1 вместо х в неравенство  (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:

(3 - (-1)) * (7 * (-1) + 1) - 5 * (-1) - 2 =

= 4 * (-7 + 1) + 5 - 2 =

= -6 * 4 + 5 - 2 =

= -24 + 5 - 2 = -21

впишем в промежутке от -∞ до (15 - √253) / 14 знак "-"

подставим 0 вместо х в неравенство  (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:

(3 - 0) * (7 * 0 + 1) - 5 * 0 - 2 = 3 * 1 - 2 = 1

впишем в промежутке от (15 - √253) / 14 до  (15 + √253)/14 знак "+"

подставим 3 вместо х в неравенство  (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:

(3 - 3) * (7 * 3 + 1) - 5 * 3 - 2 = 0 - 15 - 2 = -17

впишем в промежутке от (15 + √253) / 14 до +∞ знак "-"

Неравенство принимает отрицательное значение в промежутках:

(-∞; (15 - √253) / 14)  ∪ ((15 + √253) / 14; +∞)

Приложения:

lakOR555: ++
Похожие вопросы