Предмет: Алгебра, автор: Аноним

Мне нужна помощь тот кто регить +5 звезд ✨​​ срочно

Приложения:

Ответы

Автор ответа: Miroslava227
1

1.

 \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )  +  {ctg}^{2}  (\alpha ) =  \\  = 1 +  {ctg}^{2}  \alpha  =  \frac{1}{ \sin {}^{2} ( \alpha ) }

2.

 \cos {}^{2} ( \alpha ) (1 +  {tg}^{2} ( \alpha )) =  \cos {}^{2} ( \alpha ) \times  \frac{1}{ \cos {}^{2} ( \alpha ) }   = 1 \\

3.

1 -  \frac{1}{ \sin {}^{2} ( \alpha ) }  =  \frac{ \sin {}^{2} ( \alpha )  - 1}{ \sin {}^{2} ( \alpha ) }  =  -  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha ) }  =  -  {ctg}^{2}  (\alpha ) \\

4.

4 - tg \alpha  \times ctg \alpha  = 4 - 1 = 3

5.

 \cos( \beta )   - \sin {}^{2} ( \beta )  \cos {}^{2} ( \beta )  =  \cos {}^{2} ( \beta )  \times (1 -  \sin {}^{2} ( \beta ))  =  \\  =  \cos {}^{2} ( \beta )  \times  \cos {}^{2} ( \beta )   = \cos {}^{4} ( \beta )

6.

 \sin {}^{4} ( \beta )   + \sin {  }^{2} ( \beta )  \cos {}^{2} ( \beta ) =   \sin {}^{2} ( \beta ) ( \sin {}^{2} ( \beta )  +  \cos {}^{2} ( \beta ) ) =  \\  =  \sin {}^{2} ( \beta )  \times 1 =  \sin {}^{2} ( \beta )

7.

 {tg}^{2} ( \beta )ctg {}^{2} ( \beta ) -  \sin {}^{2} ( \beta )  = 1 -  \sin {}^{2} ( \beta )  =  \cos {}^{2} ( \beta )  \\

8.

 \frac{1 -  \cos {}^{2} ( \beta ) }{ \sin {}^{2} ( \beta )  - 1}  =  -  \frac{1 - \cos {}^{2} ( \beta )  }{1 -  \sin {}^{2} ( \beta ) }  = \\  =   -  \frac{ \sin {}^{2} ( \beta ) }{ \cos {}^{2} ( \beta ) }  =  {tg}^{2} ( \beta )

9.

 \frac{ \cos( \alpha ) + ctg \alpha  }{1 +  \sin( \alpha ) }  =  \frac{ \cos( \alpha ) +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  }{ 1 + \sin( \alpha ) }  =  \\  =  \frac{ \cos( \alpha )  \sin( \alpha )   + \cos( \alpha ) }{ \sin( \alpha ) }  \times  \frac{1}{1 +  \sin( \alpha ) }  =  \\  =  \frac{ \cos( \alpha ) ( \sin( \alpha ) + 1) }{ \sin( \alpha ) ( \sin( \alpha ) + 1) }  = ctg \alpha

10.

(1 -  \cos {}^{2} ( \alpha )) (1 +  {tg}^{2}  \alpha ) =  \sin {}^{2} ( \alpha )   \times  \frac{1}{ \cos {}^{2} ( \alpha ) }  =  {tg}^{2}  \alpha   \\

11.

 \frac{ \sin( \alpha ) }{1 +  \cos( \alpha ) }  +  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  =  \frac{ \sin {}^{2} ( \alpha ) + (1 +  \cos( \alpha )  ) {}^{2} }{ \sin( \alpha ) (1 + \cos( \alpha ) ) }  =  \\  =  \frac{ \sin {}^{2} ( \alpha )  + 1 + 2 \cos( \alpha )  + \cos {}^{2} ( \alpha )  }{ \sin( \alpha )( 1 + \cos( \alpha ))  }  =  \\  =  \frac{1 + 1 + 2 \cos( \alpha ) }{ \sin( \alpha ) (1 + \cos( \alpha ))  }  =  \frac{2(1 +  \cos( \alpha ) )}{ \sin( \alpha )(1 +  \cos( \alpha ))  }  =  \frac{2}{ \sin( \alpha ) }

12.

 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  -  \frac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }  =  \\  =  \frac{ \cos( \alpha ) (1 - \sin( \alpha )) -   \cos( \alpha )(1 +   \sin( \alpha ))  }{(1 -  \sin( \alpha ) )(1 + \sin( \alpha) )  }  =  \\  =  \frac{ \cos( \alpha )  -  \cos( \alpha )  \sin( \alpha )  -  \cos( \alpha )  -  \cos( \alpha )  \sin( \alpha ) }{ 1 - \sin {}^{2} ( \alpha ) }  =  \\  =  \frac{ - 2 \sin( \alpha )  \cos( \alpha ) }{ \cos { }^{2} ( \alpha ) }  =  -  \frac{ 2\sin( \alpha ) }{ \cos( \alpha ) }  =  - 2tg \alpha

13.

 \frac{1 - 2 \sin( \alpha )  \cos( \alpha ) }{ \sin( \alpha )   - \cos( \alpha ) }  =   \\  = \frac{ \sin { }^{2} ( \alpha )  +  \cos {}^{2}  ( \alpha ) - 2  \sin( \alpha ) \cos( \alpha )  }{ \sin( \alpha )  - \cos( \alpha )  }  =  \\  =  \frac{( \sin( \alpha )  - \cos( \alpha ))   {}^{2} }{ \sin( \alpha )  - \cos( \alpha )  }   = \sin( \alpha ) -   \cos( \alpha )

14.

 \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )   + \cos {}^{2} ( \alpha )  =  \\  = ( \sin {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha ) )( \sin {}^{2} ( \alpha )   + \cos {}^{2} ( \alpha ) )  + \cos {}^{2} ( \alpha )  =  \\  = ( -  \cos {}^{2} ( \alpha )   +  \sin {}^{2} ( \alpha ))  \times 1 +  \cos {}^{2} ( \alpha )  =  \sin {}^{2} ( \alpha )

15.

 \frac{1 +  {ctg}^{4}  \alpha }{ {tg}^{2} \alpha  +  ctg {}^{2}  \alpha }  =  \\  = (1 +  {ctg}^{4}  \alpha ) \times  \frac{1}{ {ctg}^{2} \alpha  +  \frac{1}{ {ctg}^{2}  \alpha }  }  =  \\  = (1 +  {ctg}^{4}  \alpha ) \times  \frac{ {ctg}^{2} \alpha  }{1 +  {ctg}^{4} \alpha  }  =  {ctg}^{2}  \alpha

16.

 \frac{ \cos {}^{2} ( \alpha ) }{1 +  {tg}^{2}  \alpha  }  -  \frac{ \sin {}^{2} ( \alpha ) }{ 1 + {ctg}^{2}  \alpha }  =  \\  =  \frac{ \cos {}^{2} ( \alpha ) }{1 +  \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) } }  -  \frac{  \sin {}^{2} ( \alpha )  }{1 +  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha ) } }  =  \\  =  \cos {}^{2} ( \alpha )  \times  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) }  -  \sin {}^{2} ( \alpha )  \times  \frac{ \sin {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha )  + \cos {}^{2} ( \alpha )  }  =  \\  =  \cos {}^{4} ( \alpha )   -   \sin {}^{4} ( \alpha )  =  \\  = ( \cos {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha ) ) (\cos {}^{2} ( \alpha )  +  \sin {}^{2} ( \alpha ))  =  \cos(2 \alpha )

Похожие вопросы
Предмет: Физика, автор: erokh1