Предмет: Математика, автор: imamsatubalov42

95 баллов, за решение всех производных функций.

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

1.

f'(x) =  - 4 \times 3 {x}^{2}  =  - 12 {x}^{2}

2.

f'(x) =  \frac{1}{8}  \times ( - 16) {x}^{ - 17}  =  -  \frac{2}{ {x}^{17} }  \\

3.

f'(x) = (3 {x}^{ - 1} ) '=  - 3 {x}^{ - 2}  =  -  \frac{3}{ {x}^{2} }  \\

4.

f'(x) = (13 {x}^{ \frac{1}{2} } )' = 13 \times  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  =  \frac{13}{2 \sqrt{x} }  \\

5.

f'(x) = 0

6.

f'(x) = 7 \times 9 {x}^{8}  - 2 \times 7 {x}^{6}  + 4 {x}^{3}  + 2x -  \frac{1}{10}  + 0 =  \\  = 63 {x}^{8}  - 14 {x}^{6}  + 4 {x}^{3}  + 2x - 0.1

7.

f'(x) =  -  \frac{1}{ \sin {}^{2} (x) }  -  \sin(x)  + 3 \cos(x)  \\

8.

f'(x) =  \frac{1}{  \cos {}^{2} (x) }  + 10 {x}^{9}  \\

9.

f'(x) =  -  \sin(x)  - (8 {x}^{ - 1} ) '- 5 =  \\  =  -  \sin(x)  + 8 {x}^{ - 2}  - 5 =  -  \sin(x)  +  \frac{8}{ {x}^{2} }  - 5

10.

f'(x) = ( {x}^{12} (6x + 14)) '= ( 6{x}^{13}  + 14 {x}^{12} ) '=  \\  = 78 {x}^{12}  + 168 {x}^{11}

11.

f'(x) = (2x - 8)'(2 - 6x) + (2 - 6x)'(2x - 8) =  \\  = 2(2 - 6x) - 6(2x - 8) =  \\  = 4 - 12x - 12x + 48 =  - 24x + 52

12.

f'(x) = (x - tgx) '\times 8x + (8x)'(x - tgx) =  \\  = (1 -  \frac{1}{  \cos { }^{2} (x)  } ) \times 8x + 8(x - tgx)

13.

f'(x) =  \frac{(7x - 9) ' (2 + 5x) - (2 + 5x)'(7x - 9)}{ {(5x + 2)}^{2} }  =  \\  =  \frac{7(5x + 2) - 5(7x - 9)}{ {(5x  + 2)}^{2} }  =  \frac{35x + 14 - 35x + 45}{ {(5x + 2)}^{2} }  =  \\  =  \frac{59}{ {(5x + 2)}^{2} }

14.

f'(x) =  \frac{(7 {x}^{9} +  {x}^{8}   - x)' \times ctgx - (ctgx)'(7 {x}^{9}   +  {x}^{8} - x) }{ {ctg}^{2}x }  =  \\  =  \frac{(63 {x}^{8} + 8 {x}^{7}  - 1)ctgx +  \frac{7 {x}^{9} +  {x}^{8}  - x }{ \sin {}^{2} (x) }  }{ {ctg}^{2} x}

15.

f'(x) =  \frac{(2 \sqrt{x} )'(3 {x}^{6} - 6) - (3 {x}^{6}  - 6)' \times 2 \sqrt{x}  }{ {(3 {x}^{6} - 6) }^{2} }  =  \\  =  \frac{ \frac{1}{ \sqrt{x} } (3 {x}^{6} - 6) - 18 {x}^{5}  \times 2 \sqrt{x}  }{ {(3 {x}^{6}  - 6)}^{2} }  =  \\  =  \frac{3 {x}^{5}  \sqrt{x} -  \frac{6}{ \sqrt{x} }   - 36 {x}^{5} \sqrt{x}  }{ {(3 {x}^{6} - 6) }^{2} }  =  \frac{ - 33 {x}^{5} \sqrt{x}  -  \frac{6}{ \sqrt{x} }  }{ {(3 {x}^{6} - 6) }^{2} }  =  \\  =  \frac{1}{(3 {x}^{6}  - 6) {}^{2} }  \times ( \frac{ - 33 {x}^{6} - 6 }{ \sqrt{x} } ) =  \\  =  -  \frac{33 {x}^{6} + 6 }{ \sqrt{x}  {(3 {x}^{} }^{6} - 6) {}^{2}  }

16.

f'(x) = 12 {(2x + 5)}^{11}  \times (2x + 5) '=  \\  = 12 {(2x + 5)}^{11}   \times 2 = 24 {(2x + 5)}^{11}

17.

f'(x) =  ({( {x}^{18} -  {x}^{4}   + 6)}^{ \frac{1}{2} } ) '=  \\  =  \frac{1}{2}  {( {x}^{8} -  {x}^{4}  + 6) }^{ -  \frac{1}{2} }  \times ( {x}^{8}  -  {x}^{4}  + 6)' =  \\  =  \frac{8 {x}^{7} - 4 {x}^{3}  }{2 \sqrt{ {x}^{8} -  {x}^{4}   + 6 } }  =  \frac{4 {x}^{7}  - 2 {x}^{3} }{ \sqrt{ {x}^{8}  -  {x}^{4}  + 6} }

18.

f'(x) = (2 {( \sin(x) )}^{ - 1} )' =  \\  =  - 2 (\sin(x))  {}^{ - 2}  \times ( \sin(x))'  =  -  \frac{ 2\cos(x) }{ \sin {}^{2} ( x ) }

19.

f'(x) =  -  \sin(10x)  \times (10x) '=  - 10 \sin(10x)  \\

20.

f'(x) =  \frac{1}{ \cos {}^{2} (7x -  \frac{\pi}{6} ) }  \times (7x -  \frac{\pi}{6} )' =  \frac{7}{ \cos {}^{2} (7x -  \frac{\pi}{6} ) }  \\

21.

f'(x) =  \frac{1}{2}  {(2x - 5)}^{ -  \frac{1}{2} }  \times 2 + ( {x}^{4} ) '=  \\  =  \frac{1}{ \sqrt{2x - 5} }  + 4 {x}^{3}

Похожие вопросы
Предмет: Математика, автор: kazakovadariya9