Вершины треугольника со сторонами 2см, 4√2 и 6см лежат на сфере. Найдите радиус сферы, если плоскость треугольника удалена от ее центра на 4см.
Ответы
Расположим сферу так, чтобы плоскость треугольника была горизонтальной. Тогда вид сверху даёт нам окружность в которую вписан треугольник АВС. Примем АВ=2, ВС=4 корня из2, АС=6. Обратим внимание, что АС квадрат=АВ квадрат+ ВС квадрат. Или 36=4+32. Отсюда -треугольник АВС прямоугольный. Угол В прямой(против большей стороны). Центр описанной окружности в прямоугольном треугольнике лежит на середине гипотенузы.Обозначим эту точку О1. АО1=СО1=3. Это значит, чтоО1 -центр круга полученного сечением сферы плоскостью в которой лежит треугольник АВС. Тогда расстояние от центра сферы до плоскости треугольника АВС будет равно О1О. Где О центр сферы. Рассмотрим вид сбоку. В проекции получаем окружность радиусом равным радиусу сферы R. Проекция плоскости треугольника АВС-хорда АС. Проведём радиусы ОА и ОС. Проведём перпендикуляр ОО1=4(по условию). к АС. Тогда по теореме Пифагора R=корень из(О1С квадрат+ ОО1квадрат)=корень из (9+16)=5.