Предмет: Математика, автор: artem12431

Задание на фото, хелп)

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1.

y' = 18 {x}^{2}  + 3

2.

y' = 42 {x}^{6}  - 8x +  \cos(x)

3.

y' =  \cos(x)  +  {e}^{x}

4.

y' =  \frac{1}{ \cos {}^{2} (x) }  + 14 {x}^{6}  - e \\

5.

y' = ( {x}^{ - 1}  + 2 {x}^{ -5 }  + 3 {x}^{2} ) '=  -  {x}^{ - 2}  - 10 {x}^{ - 6}  + 6x =  \\  =  -  \frac{1}{ {x}^{2} }  -  \frac{10}{ {x}^{6} }  + 6x

6.

y' =  \frac{1}{x}  + (3 {x}^{ - 4} ) '+ 0 =  \frac{1}{x}  - 12 {x}^{  - 5}  =  \frac{1}{x}  -  \frac{12}{ {x}^{5} }  \\

7.

y' = ( {x}^{7} )' \times  \sin(x)  + ( \sin(x) ) '\times  {x}^{7}  + ( {x}^{ \frac{1}{2} } ) =  \\  = 7 {x}^{6}  \sin(x)  +  \cos(x)  \times  {x}^{7}  +  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  =  \\  =  {x}^{6} (7 \sin(x)   + x\cos(x) ) +  \frac{1}{2 \sqrt{x} }

8.

y' = ( {x}^{8} ) '\times  {e}^{x}  + ( {e}^{x} ) '\times  {x}^{ 8}  =  \\  = 8 {x}^{7}  {e}^{x}  +  {e}^{x}  \times  {x}^{8}  =  {x}^{7}  {e}^{x} (8 + x)

9.

y '= 3 \sin(x) + 3x  \cos(x)

10.

y '= 6xtgx +  \frac{3 {x}^{2} }{  \cos {}^{2} (x) }  \\

11.

y' = 16 {x}^{3}  \sin(x)  +  {x}^{4}  \cos(x)  =  \\  =  {x}^{3} (16 \sin(x)   + x\cos(x))

12.

y' = 6 \cos(x)  \times  tgx + 6 \sin(x)  \times  \frac{1}{ \cos {}^{2} (x) }  =  \\  =  6 \sin(x)  +  \frac{6tgx}{ \cos(x) }

13.

y' = (2x + 3)'(3x - 1) + (3x - 1)'(2x + 3) =  \\  = 2(3x - 1) + 3(2x + 3) = 6x - 2 +6x + 9 =  \\  = 12x + 7

14.

y' = (4 {x}^{2} (2x - 1)) '= (8 {x}^{3}  - 4 {x}^{2} )' =  \\  = 24 {x}^{2}  - 8x

15.

y' =  \frac{( {x}^{2})'(2x + 3) - (2x + 3)' {x}^{2}  }{ {(2x + 3)}^{2} }  =  \\  =  \frac{2x(2x + 3) - 2 {x}^{2} }{ {(2x + 3)}^{2} }  =  \frac{4x {}^{2}  + 6x - 2 {x}^{2} }{ {(2x + 3)}^{2} }  =  \\  =  \frac{2 {x}^{2}  + 6x}{{(2x + 3)}^{2} }

16.

y' =  \frac{( {x}^{6})'( {x}^{2} - 2 x- 2) - ( {x}^{2}  - 2x - 2) '\times  {x}^{6}   }{ {( {x}^{2}  - 2x - 2)}^{2} }  =  \\  =  \frac{6 {x}^{5}( {x}^{2} - 2x - 2) - (2x - 2) {x}^{6}   }{ {( {x}^{2}  - 2x - 2)}^{2} }  =  \\  =  \frac{6 {x}^{7} - 12 {x}^{6}  - 12 {x}^{5}  - 2 {x}^{7}  + 2 {x}^{6}  }{ {( {x}^{2}  - 2x - 2)}^{2} }  =  \\  =  \frac{4 {x}^{7} - 10 {x}^{6}  - 12 {x}^{5}  }{ {( {x}^{2} - 2x - 2) }^{2} }

17.

y' =  \frac{( {x}^{2} + 1)'(x + 1) - (x + 1)'( {x}^{2}   + 1)}{ {(x + 1)}^{2} }  =  \\  =  \frac{2x(x + 1) - ( {x}^{2} + 1) }{ {(x + 1)}^{2} }  =  \frac{2 {x}^{2}  + 2x -  {x}^{2}  - 1}{ {(x + 1)}^{2} }  =  \\  =  \frac{ {x}^{2} + 2x - 1 }{ {(x + 1)}^{2} }

18.

y' =  \frac{ \cos(x)  \times (2 +  {x}^{2}) - 2x \sin(x)  }{ {(2 +  {x}^{2} )}^{2} }  \\

19.

y '=  \frac{ \frac{1}{ \cos {}^{2} (x) }( x + 1) - tgx }{ {(x + 1)}^{2} }  =  \\  =  \frac{1}{ {( x + 1)}^{2} } ( \frac{x + 1}{ \cos {}^{2} (x) }  - tgx)

20.

непонятна функция в знаменателе


Аноним: скорее всего, в 20 в знаменателе логарифм
Похожие вопросы
Предмет: Литература, автор: goha30