Предмет: Математика, автор: kirilova526

Помогите пожалуйста решить тригонометрию. Даю 60б​

Приложения:

Ответы

Автор ответа: Miroslava227
2

Ответ:

1.

 - 2 \sin(5x)  - 1 = 0 \\  \sin(5x)  =  -  \frac{1}{2}  \\  \\ 5x1 =  -  \frac{\pi}{6}  + 2\pi \: n \\ x1 =  -  \frac{\pi}{30}  +  \frac{2\pi \: n}{5}  \\  \\ 5x2 =  -  \frac{5\pi}{6}  + 2\pi \: n \\ x2 =  -  \frac{\pi}{6}  +  \frac{2\pi \: n}{5}

2.

 \cos( -  \frac{x}{6} )  =  -  \frac{ \sqrt{3} }{2}  \\  -  \frac{x}{6}  = \pm \frac{5\pi}{6}  + 2\pi \: n \:  \:  \:  | \times 6  \\ x = \pm5\pi + 12\pi \: n

3.

tg(8x - 1) =  \sqrt{3}  \\ 8x - 1 =  \frac{\pi}{3} +  \pi \: n \\ 8x =  \frac{\pi}{3}  + 1 + \pi \: n \\ x =  \frac{\pi}{24}  +  \frac{1}{8}  +  \frac{\pi \: n}{8}

4.

 \sqrt{2}  \sin(1 -  \frac{3x}{7} )  =  - 1 \\  \sin(1 -  \frac{3x}{7} )  =  -  \frac{ \sqrt{2} }{2}  \\  \\ 1 -  \frac{3x}{7}  =  -  \frac{\pi}{4}  + 2\pi \: n \\  -  \frac{3}{7} x =  -  \frac{\pi}{4}  - 1 + 2\pi \: n \:  \:  \:  |  \times ( -  \frac{7}{3} ) \\ x1 =  \frac{7\pi}{12}  +  \frac{7}{3}  -  \frac{14\pi \: n}{3}  \\  \\ 1 -  \frac{3x}{7}  =  -  \frac{3\pi}{4}  + 2\pi \: n \\  -  \frac{3x}{7}  =  -  \frac{3\pi}{4}  - 1 + 2\pi \: n \\ x2 =  \frac{7\pi}{4}  +  \frac{7}{3}  +  \frac{14\pi}{3}

5.

ctg( - 2x)  =  -  \frac{ \sqrt{3} }{3}  \\  - 2x =  -  \frac{\pi}{3} +  \pi \: n \\ x =  \frac{\pi}{6}  +  \frac{\pi \: n}{2}

6.

 \sin( \frac{\pi}{2} - 2x )  - 2 \cos(6\pi - 2x)  =  \frac{ \sqrt{2} }{2}  \\  \cos(2x)  - 2 \cos(2x)  =  \frac{ \sqrt{2} }{2}  \\  -  \cos(2x)  =  \frac{ \sqrt{2} }{2}  \\  \cos(2x)  =  -  \frac{ \sqrt{2} }{2}  \\ 2x = \pm \frac{3\pi}{4} +  2\pi \: n \\ x = \pm \frac{3\pi}{8}  + \pi \: n

7.

 \sin(4\pi - 0.5x)  + 3 \sin(5\pi - 0.5x)  =  -  \sqrt{2}  \\  -  \sin(0.5x)  + 3 \sin(0.5x)  =  -  \sqrt{2}  \\ 2 \sin(0.5x) =  -  \sqrt{2}  \\  \sin( \frac{x}{2} )  =  -  \frac{ \sqrt{2} }{2}  \\  \\  \frac{x}{2}  =  -  \frac{\pi}{4}  + 2\pi \: n \\ x1 =  -  \frac{\pi}{2} + 4 \pi \: n \\  \\  \frac{x}{2}  =  -  \frac{3\pi}{4} + 2 \pi \: n \\ x2 =  -  \frac{3\pi}{2}  + 4\pi \: n

8.

2 \cos(\pi -  \frac{x}{4} )  + 3 \sin( \frac{5\pi}{2}  -  \frac{x}{4} )  = 0 \\  - 2 \cos( \frac{x}{4} )  + 3 \cos( \frac{x}{4} )  = 0 \\  \cos( \frac{x}{4} )  = 0 \\  \frac{x}{4}  =  \frac{\pi}{2}  + \pi \: n \\ x = 2\pi + 4\pi \: n

9.

ctg( \frac{3\pi}{2}  +  x) - 2tg(3\pi + x) =  - 1 \\ -  tg(x) - 2tg(x) =  - 1 \\  - 3tg(x) =  - 1 \\ tg(x) =  \frac{1}{3}  \\ x = arctg( \frac{1}{3}) +  \pi \: n

10.

 4 \cos(7\pi + 4x)  \sin(\pi - 4x)  = 0 \\  - 4 \cos(4x)  \times  \sin(4x)  = 0 \\  - 2 \sin(8x)  = 0 \\  \sin(8x)  = 0 \\ 8x = \pi \: n \\ x =  \frac{\pi \: n}{8}

11.

2 \cos {}^{2} ( \frac{\pi}{2}  + 5x) - 2 \sin { }^{2} ( \frac{3\pi}{2}  - 5x)   = 1 \\ 2 \sin {}^{2} (5x)  - 2 \cos {}^{2} (5x)  = 1 \\  - 2( \cos {}^{2} (5x)  -  \sin {}^{2} (5x))  = 1 \\  \cos(10x)  =  -  \frac{1}{2}  \\ 10x = \pm \frac{2\pi}{ 3} + 2 \pi \: n \\ x = \pm \frac{\pi}{15}  +  \frac{\pi \: n}{5}

n принадлежит Z.

Похожие вопросы