Предмет: Математика, автор: bayjigitisakba

Помогите, дам" много" баллов

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1)

 \frac{ \sin {}^{2} ( \alpha ) - 1 }{1 -  \cos {}^{2} ( \alpha ) }  =  \frac{ - (1 -  \sin {}^{2} ( \alpha )) }{ \sin {}^{2} ( \alpha ) }  =  \\  =  -  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha ) }  =   - {ctg}^{2}  \alpha

2)

 \frac{1}{ \cos {}^{2} ( \alpha ) }  - 1 =   \frac{1 -  \cos {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) }  =  \\  =  \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) }  =  {tg}^{2}  \alpha

3)

 \cos {}^{2} ( \alpha )   +   ctg {}^{2} \alpha  + \sin {}^{2} ( \alpha )  = 1 +  {ctg}^{2}  \alpha  =  \\  = 1 +  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha ) }  =  \frac{ \sin {}^{2} ( \alpha ) +  \cos {}^{2} ( \alpha )  }{ \sin {}^{2} ( \alpha ) }  =  \frac{1}{ \sin {}^{2} ( \alpha ) }

4)

 \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )  + 2 \cos {}^{2} ( \alpha )  =  \\  = ( \sin {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha ))(  \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ))  + 2 \cos {}^{2} ( \alpha )  =  \\  =  \sin {}^{2} ( \alpha ) -   \cos( \alpha )  + 2 \cos {}^{2}  ( \alpha ) =  \sin {}^{2} ( \alpha )   +  \cos {}^{2} ( \alpha )  = 1

5)

 \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )  + 2 \cos {}^{2} ( \alpha )   \sin {}^{2} ( \alpha ) =  \\  = ( \sin {}^{2} ( \alpha )   - \cos {}^{2} ( \alpha ))(  \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )) + 2  \sin {}^{2} ( \alpha )  \cos {}^{2} ( \alpha )  =  \\  =  - ( \cos {}^{2} ( \alpha ) -   \sin {}^{2} ( \alpha ))  \times 1 + 2 \sin {}^{2} ( \alpha )  \cos {}^{2} ( \alpha )  =  \\  =  -  \cos( 2\alpha )  +  \frac{1}{2}  \times 4 \sin {}^{2} ( \alpha )  \cos {}^{2} ( \alpha )  =  -  \cos(2 \alpha )  +  \frac{1}{2}  \sin {}^{2} ( 2\alpha )

6)

1 +  {tg}^{2}  \alpha  +  \frac{1}{ \sin {}^{2} ( \alpha ) }  =  \frac{1}{ \cos {}^{2} ( \alpha ) }  +  \frac{1}{ \sin {}^{2} ( \alpha ) }  =  \\  =  \frac{ \sin {}^{2} ( \alpha ) +  \cos {}^{2} ( \alpha )  }{ \sin {}^{2} ( \alpha ) \cos {}^{2} ( \alpha )  }  =  \frac{1}{ \sin {}^{2} ( \alpha ) \cos {}^{2} ( \alpha )  }  =  \\  =  \frac{4}{4 \sin {}^{2} ( \alpha )  \cos {}^{2} ( \alpha ) }  =  \frac{4}{ \sin {}^{2} ( 2\alpha ) }

7)

 \frac{1 +  {tg}^{2} \alpha  }{1 +  {ctg}^{2}  \alpha }  =  \frac{1 +  \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) } }{1 +  \frac{ \cos {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha ) } }  =  \\  =  \frac{ \cos {}^{2} ( \alpha )  +  \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) }  \times  \frac{ \sin {}^{2} ( \alpha ) }{ \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) }  =  {tg}^{2}  \alpha

8)

(1 + tg \alpha )(1 + ctg \alpha ) -  \frac{1}{ \sin( \alpha ) \cos( \alpha )  }  =  \\  = 1 + tg \alpha  + ctg \alpha  + tg \alpha ctg \alpha  -  \frac{1}{ \sin( \alpha )  \cos( \alpha ) }  = 1 +  \\  =  1 + \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  + 1 -  \frac{1}{ \sin( \alpha )  \cos( \alpha ) }  =  \\  = 2 +  \frac{ \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) - 1 }{ \sin( \alpha )  \cos( \alpha ) }  = 2

Похожие вопросы
Предмет: Русский язык, автор: awraf33
Предмет: Другие предметы, автор: danilkolan9294