Предмет: Алгебра, автор: dimamen00000

Чотири числа утворюють геометричну прогресію. Якщо до них додати відповідно 6, 12, 14 і 8, тоді отримаємо чотири числа, які утворюють арифметичну прогресію. Знайди числа, що утворюють геометричну прогресію.

Відповідь:

знаменник геометричної прогресії: q=

члени геометричної прогресії :

b1=
b2=
b3=
b4=

Ответы

Автор ответа: bb573878
4

Четыре числа образуют геометрическую прогрессию. Если к ним прибавить соответственно 6, 12, 14 и 8, тогда получим четыре числа, которые образуют арифметическую прогрессию. Найди числа, которые образуют геометрическую прогрессию.

Ответ:

знаменатель геометрической прогрессии: q= 2

члены геометрической прогрессии :

b1= 4

b2=8

b3= 16

b4=32

Решение

b₁; b₁·q; b₁·q²; b₁·q³     геометрическая прогрессия

тогда

b₁+6; b₁·q+12; b₁·q; b₁·q³     арифметическая прогрессия

по характеристическому свойству арифметической прогрессии

\displaystyle\\\left \{ {{2(b_1q+12)=b_1+6+b_1q^2+14} \atop {2(b_1q^2+14)=b_1q+12+b_1q^3+8}} \right. \\\\\\\left \{ {{2b_1q+24=b_1+b_1q^2+20} \atop {2b_1q^2+28=b_1q+b_1q^3+20}} \right. \\\\\\\left \{ {{b_1q^2-2b_1q+b_1=4} \atop {b_1q^3-2b_1q^2+b_1q=8}} \right. \\\\\\\left \{ {{b_1(q^2-2q+1)=4} \atop {b_1q(q^2-2q+1)=8}} \right.

q ≠ 1

разделим второе уравнение на первое

q = 2

\displaystyle\\b_1=\frac{4}{q^2-2q+1}=\frac{4}{(q-1)^2}=\frac{4}{(2-1)^2} =4\\\\b_2=4\cdot2=8\\\\b_3=8\cdot2=16\\\\b_1=16\cdot2=32\\

Похожие вопросы